1
|
Gyoja F, Sato K, Yamashita T, Kusakabe TG. An Extensive Survey of Vertebrate-specific, Nonvisual Opsins Identifies a Novel Subfamily, Q113-Bistable Opsin. Genome Biol Evol 2025; 17:evaf032. [PMID: 40036976 PMCID: PMC11893379 DOI: 10.1093/gbe/evaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
A group of nonvisual opsins specific to vertebrates is essential to understand evolution of lateral eyes, one of the most prominent innovations in this lineage. Nevertheless, our knowledge of their evolutionary history remains limited. To develop an integrated view of their evolution, we surveyed these non-visual opsins (VA opsin, pinopsin, parapinopsin, parietopsin, and parapinopsin-like) in 451 vertebrate genomes. Through extensive manual curation, we completed a high-quality catalog. We could not find them in 202 mammals, supporting previous reports of their loss. VA opsins are highly conserved among nonmammals. In contrast, other opsin subfamilies experienced more dynamic molecular evolution with many secondary losses. In addition, we found a previously unreported opsin subfamily that we named Q113-Bistable (QB) opsin. We found its orthologs only in several lizards and the tuatara. Nevertheless, QB opsin pseudogenes were discovered in diverse taxa, including ray-finned fishes, indicating its ancient origin. QB opsin, parapinopsin, and parietopsin are extremely prone to be lost in the course of evolution, and loss events involving these opsins seem to occur concomitantly. Furthermore, we demonstrated the spectral properties of QB opsin as a UV-sensitive, bistable photo-pigment. This study provides the first integrated view of the entire evolutionary history of this group of opsins.
Collapse
Affiliation(s)
- Fuki Gyoja
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Biology, Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Keita Sato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Biology, Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
2
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy SA, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. Mol Biol Evol 2024; 41:msae246. [PMID: 39657112 PMCID: PMC11979771 DOI: 10.1093/molbev/msae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Cartilaginous fishes (chondrichthyans: chimeras and elasmobranchs -sharks, skates, and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic, and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterize general aspects of the catshark genome, confirming the high conservation of genome organization across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electrosensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
Affiliation(s)
- Hélène Mayeur
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - John Mulley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Léo Michel
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Kanika Sharma
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Cologne 50674, Germany
| | - Ronan Lagadec
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Jean-Marc Aury
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Peter Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Julie Poulain
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Sophie Mangenot
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Daniel Mead
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Michelle Smith
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Craig Corton
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jason Skelton
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Emma Betteridge
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Olga Dudchenko
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Arina D Omer
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Erez L Aiden
- The Center for Genome Architecture and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shane A McCarthy
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Ying Sims
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - James Torrance
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Alan Tracey
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Kerstin Howe
- Sequencing Department, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall TR10 9FE, UK
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kyle Martin
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Cologne 50674, Germany
| | - Sylvie Mazan
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-mer, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
3
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
4
|
Nishimura O, Rozewicki J, Yamaguchi K, Tatsumi K, Ohishi Y, Ohta T, Yagura M, Niwa T, Tanegashima C, Teramura A, Hirase S, Kawaguchi A, Tan M, D'Aniello S, Castro F, Machado A, Koyanagi M, Terakita A, Misawa R, Horie M, Kawasaki J, Asahida T, Yamaguchi A, Murakumo K, Matsumoto R, Irisarri I, Miyamoto N, Toyoda A, Tanaka S, Sakamoto T, Semba Y, Yamauchi S, Yamada K, Nishida K, Kiyatake I, Sato K, Hyodo S, Kadota M, Uno Y, Kuraku S. Squalomix: shark and ray genome analysis consortium and its data sharing platform. F1000Res 2022; 11:1077. [PMID: 36262334 PMCID: PMC9561540 DOI: 10.12688/f1000research.123591.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/13/2023] Open
Abstract
The taxon Elasmobranchii (sharks and rays) contains one of the long-established evolutionary lineages of vertebrates with a tantalizing collection of species occupying critical aquatic habitats. To overcome the current limitation in molecular resources, we launched the Squalomix Consortium in 2020 to promote a genome-wide array of molecular approaches, specifically targeting shark and ray species. Among the various bottlenecks in working with elasmobranchs are their elusiveness and low fecundity as well as the large and highly repetitive genomes. Their peculiar body fluid composition has also hindered the establishment of methods to perform routine cell culturing required for their karyotyping. In the Squalomix consortium, these obstacles are expected to be solved through a combination of in-house cytological techniques including karyotyping of cultured cells, chromatin preparation for Hi-C data acquisition, and high fidelity long-read sequencing. The resources and products obtained in this consortium, including genome and transcriptome sequences, a genome browser powered by JBrowse2 to visualize sequence alignments, and comprehensive matrices of gene expression profiles for selected species are accessible through https://github.com/Squalomix/info.
Collapse
Affiliation(s)
- Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - John Rozewicki
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Kazuaki Yamaguchi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Yuta Ohishi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Tazro Ohta
- Joint Support-Center for Data Science Research, Database Center for Life Science, Mishima, Shizuoka, 411-8540, Japan
| | - Masaru Yagura
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Taiki Niwa
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Akinori Teramura
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Akane Kawaguchi
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Milton Tan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Filipe Castro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Ryo Misawa
- Japan Fisheries Research and Education Agency, Hachinohe, Aomori, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Junna Kawasaki
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Asahida
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Atsuko Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| | | | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature-Zoology, Hamburg, 20146, Germany
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Sho Tanaka
- School of Marine Science and Technology, Tokai University, Shizuoka, Shizuoka, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan., Okayama, Japan
| | - Yasuko Semba
- Highly Migratory Resources Division, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shizuoka, Shizuoka, Japan
| | | | - Kazuyuki Yamada
- Marine Science Museum, Tokai University, Shizuoka, Shizuoka, Japan
| | | | | | - Keiichi Sato
- Okinawa Churaumi Aquarium, Motobu, Okinawa, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo,, Kashiwa, Chiba, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan
| | - Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Tokyo, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 657-0024, Japan,Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan,
| |
Collapse
|
5
|
Fruciano C, Franchini P, Jones JC. Capturing the rapidly evolving study of adaptation. J Evol Biol 2021; 34:856-865. [PMID: 34145685 DOI: 10.1111/jeb.13871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Research on the genomics of adaptation is rapidly changing. In the last few decades, progress in this area has been driven by methodological advances, not only in the way increasingly large amounts of molecular data are generated (e.g. with high-throughput sequencing), but also in the way these data are analysed. This includes a growing appreciation and quantitative treatment of covariation among units within the same data type (e.g. genes) or across data types (e.g. genes and phenotypes). The development and adoption of more and more integrative tools have resulted in richer and more interesting empirical work. This special issue - comprising methodological, empirical, and review papers - aims to capture a 'snapshot' of this rapidly evolving field. We discuss in particular three important themes in the study of adaptation: the genetic architecture of adaptive variation, protein-coding and regulatory changes, and parallel evolution. We highlight how more traditional key themes in the study of genetic architecture (e.g. the number of loci underlying adaptive traits and the distribution of their effects) are now being complemented by other factors (e.g. how patterns of linkage and number of loci interact to affect the ability to adapt). Similarly, apart from addressing the relative importance of protein-coding and regulatory changes, we now have the tools to look in-depth at specific types of regulatory variation to gain a clearer picture of regulatory networks. Finally, parallel evolution has always been central to the study of adaptation, but now we are often able to address the question of whether - and to what extent - parallelism at the organismal or phenotypic level is matched by parallelism at the genetic level. Perhaps most importantly, we can now determine what mechanisms are driving parallelism (or lack thereof) across levels of biological organization. All these recent methodological developments open up new directions for future studies of adaptive changes across traits, levels of biological organization, demographic contexts and time scales.
Collapse
Affiliation(s)
- Carmelo Fruciano
- National Research Council - Institute of Marine Biological Resources and Biotechnologies, Messina, Italy.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France.,School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia C Jones
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|