1
|
Liu D, Gong H, Tao Z, Chen S, Kong Y, Xiao B. LncRNA IUR downregulates miR-144 to regulate PTEN in nasopharyngeal carcinoma. Arch Physiol Biochem 2023; 129:116-121. [PMID: 32795216 DOI: 10.1080/13813455.2020.1799018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IUR is a recently identified oncogenic lncRNA in leukaemia, while its roles in nasopharyngeal carcinoma (NPC) are unclear. We aimed to explore the possible involvement of IUR in NPC. IUR and PTEN were downregulated, while miR-144 was upregulated in NPC. In addition, IUR was inversely correlated with miR-144 and positively correlated with PTEN. In NPC cells, overexpression of IUR resulted in a downregulated expression of miR-144 and an upregulated expression of PTEN. Overexpression of miR-144 led to a downregulated expression of PTEN and attenuated the effects of overexpression of IUR. Cell proliferation assay showed that overexpression of IUR and PTEN resulted in decreased NPC cell proliferation rate. Overexpression of miR-144 played an opposite role and attenuated the effects of overexpression of IUR. In conclusion, IUR can downregulate miR-144 to upregulate PTEN in NPC, therefore inhibiting NPC cell proliferation.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otolaryngology, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Hao Gong
- Huangshi Maternity and Children's Health Hospital, Huangshi, Hubei, China
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shiming Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yonggang Kong
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bokui Xiao
- Otolaryngology Head and Neck Surgery Institute, Medical School of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem 2023; 70:344-356. [PMID: 35609005 DOI: 10.1002/bab.2356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer is the most prevalent lung cancer, and almost three-fourths of patients are diagnosed in the advanced stage directly. In this stage, chemotherapy gives only a 15% 5-year survival rate. As people have varied symptoms and reactions to a specific cancer type, treatment for the tumor is likely to fall short, complicating cancer therapy. Immunotherapy is a breakthrough treatment involving drugs targeting novel immune checkpoint inhibitors like CTLA-4 and PD-1/PD-L1, along with combination therapies. In addition, the utility of engineered CAR-T and CAR-NK cells can be an effective strategy to promote the immune response against tumors. The concept of personalized cancer vaccines with the discovery of neoantigens loaded on dendritic cell vectors can also be an effective approach to cure cancer. Advances in genetic engineering tools like CRISPR/Cas9-mediated gene editing of T cells to enhance their effector function is another ray of hope. This review aims to provide an overview of recent developments in cancer immunotherapy, which can be used in first- and second-line treatments in the clinical space. Further, the intervention of artificial intelligence to detect cancer tumors at an initial stage with the help of machine learning techniques is also explored.
Collapse
Affiliation(s)
- Tarunya Menon
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shubhang Gopal
- Department of Information Technology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
3
|
Clinical relevance and therapeutic aspects of professional antigen-presenting cells in lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:237. [PMID: 36175603 DOI: 10.1007/s12032-022-01841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Lung cancer stays the preeminent cause of death worldwide. Despite recent advancements in chemotherapy, radiotherapy, and immunotherapy, the survival rate for people with advanced stages of the disease is still appalling. Moreover, there is a severe lack of reliable prognoses and indicators for classification in newly developed immunotherapies. A better understanding of immune cells is necessary to harness immune response mechanisms for therapeutic effects. Professional antigen-presenting cells are responsible for determining the fate of the immune response through the antigen processing and presentation pathway (APP). The most professional antigen-presenting cells (APC) include the dendritic cells (DC), macrophages, and B cells, which present antigens to the T-helper cells. Dendritic cells are significantly explored as a tool for immunotherapy owing to their precise ability to provoke and alter T-cell responses. Moreover, the role of tumor-associated macrophages (TAMs), an abundant leukocyte in lung cancer, is also a potential target for adjuvant anti-cancer therapies. In this review, we summarize the recent advances in our understanding of the various types of immunotherapy mapped out via professional antigen-presenting cells in lung cancer.
Collapse
|
4
|
Rahman MM, Behl T, Islam MR, Alam MN, Islam MM, Albarrati A, Albratty M, Meraya AM, Bungau SG. Emerging Management Approach for the Adverse Events of Immunotherapy of Cancer. Molecules 2022; 27:molecules27123798. [PMID: 35744922 PMCID: PMC9227460 DOI: 10.3390/molecules27123798] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, which stimulates the body’s immune system, has received a considerable amount of press in recent years because of its powerful benefits. Cancer immunotherapy has shown long-term results in patients with advanced disease that are not seen with traditional chemotherapy. Immune checkpoint inhibitors, cytokines like interleukin 2 (IL-2) and interferon-alpha (IFN), and the cancer vaccine sipuleucel-T have all been licensed and approved by the FDA for the treatment of various cancers. These immunotherapy treatments boost anticancer responses by stimulating the immune system. As a result, they have the potential to cause serious, even fatal, inflammatory and immune-related side effects in one or more organs. Immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cell therapy are two immunotherapy treatments that are increasingly being used to treat cancer. Following their widespread usage in the clinic, a wave of immune-related adverse events (irAEs) impacting virtually every system has raised concerns about their unpredictability and randomness. Despite the fact that the majority of adverse effects are minimal and should be addressed with prudence, the risk of life-threatening complications exists. Although most adverse events are small and should be treated with caution, the risk of life-threatening toxicities should not be underestimated, especially given the subtle and unusual indications that make early detection even more difficult. Treatment for these issues is difficult and necessitates a multidisciplinary approach involving not only oncologists but also other internal medicine doctors to guarantee quick diagnosis and treatment. This study’s purpose is to give a fundamental overview of immunotherapy and cancer-related side effect management strategies.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Correspondence: (T.B.); (S.G.B.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Md. Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Mohammed Albratty
- Department of Pharmaceutical Chemsitry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.G.B.)
| |
Collapse
|
5
|
Zhao X, Dai F, Mei L, Huang D, Shen X, Zhang H, She X, Ma Z. The Potential Use of Dynamics Changes of ctDNA and cfDNA in the Perioperative Period to Predict the Recurrence Risk in Early NSCLC. Front Oncol 2021; 11:671963. [PMID: 34336662 PMCID: PMC8322676 DOI: 10.3389/fonc.2021.671963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Postoperative circulation tumor DNA (ctDNA) is a promising method to predict the risk of recurrence. However, the amount of ctDNA in patients with early NSCLC is too small. Cell damages caused during the intraoperative period leads to a significant increase in cell free DNA (cfDNA). Whether cfDNA content is restored to the preoperative level within a short time after surgery may indicate the degree of surgical trauma. In this study, dynamic changes of cfDNA combined with ctDNA in the perioperative period of NSCLC were used to explore the possibility of them as a biomarker to indicate the risk of recurrence. METHODS NSCLC patients who planned to undergo radical resection were investigated. 10ml of peripheral blood was collected before, during and 7 days after surgery. DNA concentration was measured, and a 23-gene NGS panel was performed to detect gene mutations. All the patients would be followed-up for at least 18 months. RESULTS A total of 7 patients were sampled. The amount of cfDNA before surgery was 36.6 ± 14.7ng, and increased to 127.2 ± 52.2ng during surgery. 7 days after surgery, it dropped to 45.23 ± 9.41ng in 3 patients and rose to 173.7 ± 80.80ng in the remaining 4. Only 1 patient was ctDNA positive after surgery, with decreasing cfDNA, and he was the only one that relapsed and died within 18 months. CONCLUSION The use of ctDNA to predict the risk of postoperative recurrence of NSCLC is a very valuable method, and it may be more reliable if combined with the dynamic changes of cfDNA. The amounts of cfDNA are raised by the operation, but will be polarized after surgery in 7 days. Postoperative NSCLC patients with positive ctDNA and reduced cfDNA have a higher risk of recurrence.
Collapse
Affiliation(s)
- Xiaolong Zhao
- The Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fuqiang Dai
- The Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Longyong Mei
- The Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xueke She
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Zheng Ma
- The Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
- The Department of Thoracic Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
6
|
Zhang J, Zhang X, Yang S, Bao Y, Xu D, Liu L. FOXH1 promotes lung cancer progression by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2021; 21:293. [PMID: 34090445 PMCID: PMC8180118 DOI: 10.1186/s12935-021-01995-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The expression of forkhead box protein H1 (FOXH1) is frequently upregulated in various cancers. However, the molecular mechanisms underlying the association between FOXH1 expression and lung cancer progression still remain poorly understood. Thus, the main objective of this study is to explore the role of FOXH1 in lung cancer. METHODS The Cancer Genome Atlas dataset was used to investigate FOXH1 expression in lung cancer tissues, and the Kaplan-Meier plotter dataset was used to determine the role of FOXH1 in patient prognosis. A549 and PC9 cells were transfected with short hairpin RNA targeting FOXH1 mRNA. The Cell Counting Kit-8, colony formation, soft agar, wound healing, transwell invasion and flow cytometry assays were performed to evaluate proliferation, migration and invasion of lung cancer cells. Tumorigenicity was examined in a BALB/c nude mice model. Western blot analysis was performed to assess the molecular mechanisms, and β-catenin activity was measured by a luciferase reporter system assay. RESULTS Higher expression level of FOXH1 was observed in tumor tissue than in normal tissue, and this was associated with poor overall survival. Knockdown of FOXH1 significantly inhibited lung cancer cell proliferation, migration, invasion, and cycle. In addition, the mouse xenograft model showed that knockdown of FOXH1 suppressed tumor growth in vivo. Further experiments revealed that FOXH1 depletion inhibited the epithelial-mesenchymal transition of lung cancer cells by downregulating the expression of mesenchymal markers (Snail, Slug, matrix metalloproteinase-2, N-cadherin, and Vimentin) and upregulating the expression of an epithelial marker (E-cadherin). Moreover, knockdown of FOXH1 significantly downregulated the activity of β-catenin and its downstream targets, p-GSK-3β and cyclin D1. CONCLUSION FOXH1 exerts oncogenic functions in lung cancer through regulation of the Wnt/β-catenin signaling pathway. FOXH1 might be a potential therapeutic target for patients with certain types of lung cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China
- Department of Histology and Embryology, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Xian Zhang
- Department of General Surgery, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China
| | - Shasha Yang
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China
| | - Yanqiu Bao
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China
| | - Dongyuan Xu
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China.
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China.
| |
Collapse
|
7
|
Luan S, Zeng X, Zhang C, Qiu J, Yang Y, Mao C, Xiao X, Zhou J, Zhang Y, Yuan Y. Advances in Drug Resistance of Esophageal Cancer: From the Perspective of Tumor Microenvironment. Front Cell Dev Biol 2021; 9:664816. [PMID: 33816512 PMCID: PMC8017339 DOI: 10.3389/fcell.2021.664816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance represents the major obstacle to get the maximum therapeutic benefit for patients with esophageal cancer since numerous patients are inherently or adaptively resistant to therapeutic agents. Notably, increasing evidence has demonstrated that drug resistance is closely related to the crosstalk between tumor cells and the tumor microenvironment (TME). TME is a dynamic and ever-changing complex biological network whose diverse cellular and non-cellular components influence hallmarks and fates of tumor cells from the outside, and this is responsible for the development of resistance to conventional therapeutic agents to some extent. Indeed, the formation of drug resistance in esophageal cancer should be considered as a multifactorial process involving not only cancer cells themselves but cancer stem cells, tumor-associated stromal cells, hypoxia, soluble factors, extracellular vesicles, etc. Accordingly, combination therapy targeting tumor cells and tumor-favorable microenvironment represents a promising strategy to address drug resistance and get better therapeutic responses for patients with esophageal cancer. In this review, we mainly focus our discussion on molecular mechanisms that underlie the role of TME in drug resistance in esophageal cancer. We also discuss the opportunities and challenges for therapeutically targeting tumor-favorable microenvironment, such as membrane proteins, pivotal signaling pathways, and cytokines, to attenuate drug resistance in esophageal cancer.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajun Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyi Mao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, Zhang Y, Yuan Y. Mechanisms of Pharmaceutical Therapy and Drug Resistance in Esophageal Cancer. Front Cell Dev Biol 2021; 9:612451. [PMID: 33644048 PMCID: PMC7905099 DOI: 10.3389/fcell.2021.612451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Pharmaceutical therapies are essential for esophageal cancer (EC). For the advanced EC, the neoadjuvant therapy regimen, including chemotherapy plus radiotherapy and/or immunotherapy, is effective to achieve clinical benefit, even pathological complete response. For the unresectable, recurrent, and metastatic EC, the pharmaceutical therapy is the limited effective regimen to alleviate the disease and prolong the progression-free survival and overall survival. In this review, we focus on the pharmaceutical applications in EC treatment including cytotoxic agents, molecular targeted antibodies, and immune checkpoint inhibitors (ICIs). The chemotherapy regimen is based on cytotoxic agents such as platinum-based complexes, fluorinated pyrimidines and taxenes. Although the cytotoxic agents have been developed in past decades, the standard chemotherapy regimen is still the cisplatin and 5-FU or paclitaxel because the derived drugs have no significant advantages of overcoming the shortcomings of side effects and drug resistance. The targeted molecular therapy is an essential supplement for chemotherapy; however, there are only a few targeted therapies available in clinical practice. Trastuzumab and ramucirumab are the only two molecular therapy drugs which are approved by the US Food and Drug Administration to treat advanced and/or metastatic EC. Although the targeted therapy usually achieves effective benefits in the early stage therapy of EC, the patients will always develop drug resistance during treatment. ICIs have had a significant impact on routine clinical practice in cancer treatment. The anti-programmed cell death-1 monoclonal antibodies pembrolizumab and nivolumab, as the ICIs, are recommended for advanced EC by several clinical trials. However, the significant issues of pharmaceutical treatment are still the dose-limiting side effects and primary or secondary drug resistance. These defects of pharmaceutical therapy restrain the clinical application and diminish the effectiveness of treatment.
Collapse
Affiliation(s)
- Chengyi Mao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Yang R, Zhang Y, Liao X, Yao Y, Huang C, Liu L. The Relationship Between Anti-Hypertensive Drugs and Cancer: Anxiety to be Resolved in Urgent. Front Pharmacol 2020; 11:610157. [PMID: 33381045 PMCID: PMC7768037 DOI: 10.3389/fphar.2020.610157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023] Open
Abstract
Hypertension is the prevailing independent risk factor for cardiovascular disease worldwide. Anti-hypertensive drugs are the common and effective cure for lowering blood pressure in patients with hypertension. However, some large-scale clinical studies have pointed out that long-term ingestion of some oral anti-hypertensive drugs was associated with risks of incident cancer and the survival time. In contrast, other studies argue that anti-hypertensive drugs are not related to the occurrence of cancer, even as a complementary therapy of tumor treatment. To resolve the dispute, numerous recent mechanistic studies using animal models have tried to find the causal link between cancer and different anti-hypertensive drugs. However, the results were often contradictory. Such uncertainties have taken a toll on hypertensive patients. In this review, we will summarize advances of longitudinal studies in the association between anti-hypertensive drugs and related tumor risks that have helped to move the field forward from associative to causative conclusions, in hope of providing a reference for more rigorous and evidence-based clinical research on the topic to guide the clinical decision making.
Collapse
Affiliation(s)
- Rong Yang
- Department of International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- Department of International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yao
- Department of International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanying Huang
- Department of International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Lixia Liu
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Huang Z, Su W, Lu T, Wang Y, Dong Y, Qin Y, Liu D, Sun L, Jiao W. First-Line Immune-Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Current Landscape and Future Progress. Front Pharmacol 2020; 11:578091. [PMID: 33117170 PMCID: PMC7577011 DOI: 10.3389/fphar.2020.578091] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths worldwide. Most of these patients with non-small cell lung cancer (NSCLC) present with the advanced stage of the disease at the time of diagnosis, and thus decrease the 5-year survival rate to about 5%. Immune checkpoint inhibitors (ICIs) can act on the inhibitory pathway of cancer immune response, thereby restoring and maintaining anti-tumor immunity. There are already ICIs targeting different pathways, including the programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) pathway. Since March 2015, the US Food and Drug Administration (FDA) approved nivolumab (anti-PD-1 antibody) as the second-line option for treatment of patients with advanced squamous NSCLC. Additionally, a series of inhibitors related to PD-1/PD-L1 immune-checkpoints have helped in the immunotherapy of NSCLC patients, and modified the original treatment model. However, controversies remain regarding the use of ICIs in a subgroup with targeted oncogene mutations is a problem that we need to solve. On the other hand, there are continuous efforts to find biomarkers that effectively predict the response of ICIs to screen suitable populations. In this review, we have reviewed the history of the continuous developments in cancer immunotherapy, summarized the mechanism of action of the immune-checkpoint pathways. Finally, based on the results of the first-line recent trials, we propose a potential first-line immunotherapeutic strategy for the treatment of the patients with NSCLC.
Collapse
Affiliation(s)
- Zhangfeng Huang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Su
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanting Dong
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Qin
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dahai Liu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Sun
- Department of Ultrasound, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Maung TZ, Ergin HE, Javed M, Inga EE, Khan S. Immune Checkpoint Inhibitors in Lung Cancer: Role of Biomarkers and Combination Therapies. Cureus 2020; 12:e8095. [PMID: 32542150 PMCID: PMC7292688 DOI: 10.7759/cureus.8095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with a poor prognosis. Despite aggressive treatment, progression-free survival (PFS) and overall survival are limited. Recently, various kinds of immune checkpoint inhibitors (ICIs) have emerged for several cancers, targeting PD1, PDL1, and CTLA-4. ICIs have made a significant breakthrough in cancer and revolutionized the management of cancer including lung cancer. However, there are a lot of controversies regarding which group of patients is most suitable to be treated with ICIs in terms of monotherapy, combination, and predictive biomarkers. We reviewed various kinds of studies, such as meta-analysis, randomized control trials, multi-center cohort studies, and case-control studies from PubMed written in English from the last five years. ICIs have significant benefits in the overall survival compared with traditional chemotherapy. Patients with a higher level of PDL1 expression and high tumor mutational burden (TMB) have a higher response rate, and those with EGFR-/ALK- were better than those with EGFR+/ALK+. The patient who responded to immunotherapy completely can still maintain the efficacy after two years of treatment. Neoadjuvant immunotherapy in patients with resectable non-small cell lung cancer resulted in a 45% major pathology response (MPR) and 40% downstaging. Combined therapy (ICIs + chemotherapy) was better than chemotherapy alone, irrespective of PD-L1 expression. A combination of ICIs such as CTLA-4 and PD-1/PD-L1 improved PFS as well. Radiochemotherapy ahead of ICIs is promising as well. However, ICIs combined with EGFR/ALK-TKI (tyrosine kinase inhibitor) are not suggested for the time being. PDL1 expression, TMB, and EGFR/ALK mutations are promising predictive biomarkers. Gut microbiota, galectin-3, and intensity of CD8 cell infiltration are other potential predictive biomarkers. These are very important in the future management of lung cancers as they can prevent unnecessary toxicities and cost of treatment.
Collapse
Affiliation(s)
- Tun Zan Maung
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Huseyin Ekin Ergin
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mehwish Javed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Evelyn E Inga
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Internal Medicine, LaSante Health Center, Brooklyn, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
12
|
Lu Y, Xu W, Gu Y, Chang X, Wei G, Rong Z, Qin L, Chen X, Zhou F. Non-small Cell Lung Cancer Cells Modulate the Development of Human CD1c + Conventional Dendritic Cell Subsets Mediated by CD103 and CD205. Front Immunol 2019; 10:2829. [PMID: 31921114 PMCID: PMC6914740 DOI: 10.3389/fimmu.2019.02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) leads to a high death rate in patients and is a major threat to human health. NSCLC induces an immune suppressive microenvironment and escapes from immune surveillance in vivo. At present, the molecular mechanisms of NSCLC immunopathogenesis and the immune suppressive microenvironment induced by NSCLC have not been fully elucidated. Here, we focus on the effect of NSCLC cells on the development and differentiation of human CD1c+ conventional dendritic cell (DC) subsets mediated by CD205 and CD103. The peripheral blood mononuclear cells (PBMCs) were isolated from NSCLC patients and healthy donors. DCs were induced and cocultured with primary NSCLC cells or tumor cell line H1299. DCs without incubation with tumor cells are control. The protein expression of costimulatory molecules such as CD80 and CD86, HLA-DR, pro-/anti-inflammatory cytokines such as IL-10 and IL-12, and CD205 and CD103 on CD1c+ DCs was detected by flow cytometry. Our data revealed two new subpopulations of human CD1c+ DCs (CD1c+CD205+CD103+ and CD1c+CD205+CD103− DC) in healthy donors and NSCLC patients. NSCLC cells modulate the development of the CD1c+CD205+CD103+ DC and CD1c+CD205+CD103− DC subpopulations in vitro and ex vivo. NSCLC cells also suppress the expression of signal molecules such as CD40, CD80, CD86, and HLA-DR on CD1c+ DCs. In addition, the production of pro-inflammatory cytokines, including IL-12 and IL-23, is downregulated by NSCLC cells; however, the secretion of anti-inflammatory cytokines, such as IL-10 and IL-27, by CD1c+ DCs is upregulated by NSCLC cells. Our results suggest that NSCLC cells may induce immune tolerogenic DCs, which block DC-mediated anti-tumor immunity in NSCLC patients. Our data may be helpful in revealing new cellular mechanisms related to the induction of tolerogenic CD1c+ DCs by NSCLCs and the development of an immune suppressive microenvironment that causes tumor cells to escape immune surveillance. Our results indicate a potential role for CD1c+ DC subsets mediated by CD205 and CD103 in DC-mediated immunotherapy to target NSCLC in the future.
Collapse
Affiliation(s)
- Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Yanli Gu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Guojian Wei
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China.,Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|
13
|
Dong J, Zhu D, Tang X, Qiu X, Lu D, Li B, Lin D, Zhou Q. Detection of Circulating Tumor Cell Molecular Subtype in Pulmonary Vein Predicting Prognosis of Stage I-III Non-small Cell Lung Cancer Patients. Front Oncol 2019; 9:1139. [PMID: 31737568 PMCID: PMC6830362 DOI: 10.3389/fonc.2019.01139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/11/2019] [Indexed: 02/05/2023] Open
Abstract
Background: There was rare studies on prognosis of pulmonary venous CTC and early or advanced NSCLC patients. We want to investigate whether CTCs and the subtype of it can predict the prognosis of NSCLC patients. Patients and Methods: One hundred and fourteen patients with stage I-III NSCLC were included CanPatrol™ CTC analysis. PD-L1 expression level were detected in CTC of pulmonary vein. PD-L1, number of CTC in pulmonary, CTC's subtype, clinical characteristics, prognosis of patients were analyzed. Results: 110/114 (96.5%) patients could be found CTCs in pulmonary vein, 58/114 (50.9%) patients had CTC≥15/ml in pulmonary vein, 53/110 patients (48.2%) were defined as having MCTC subtype and 56/110 patient were found have PD-L1 (+) CTC in pulmonary vein. Multivariate analyses showed that PVCTC, MCTC, and stage were independent factors of DFS (P < 0.05). No OS difference was found between number of CTC (P = 0.33) and other CTC factors (P > 0.05), only stage was independent factor of OS (P = 0.019). There were decreases of CTC number and MCTC number in EGFR mutant subgroup (P = 0.0009 and P = 0.007). There were increases of CTC (P = 0.0217), MCTC (P = 0.0041), and PD-L1 (+) CTC (P = 0.0002) number in KRAS mutant subgroup. There was increase of MCTC (P =0.0323) number in BRAF mutant. There were fewer CTCs in pulmonary vein for patients with EGFR mutant than in patients with full wild-type gene (P = 0.0346). There were more PD-L1 positive CTCs in pulmonary vein for patients with ALK rearrangement, KRAS mutant, BRAF mutant, or ROS1 mutant than in patients with full wild-type gene (P = 0.0610, P = 0.0003, P = 0.032, and P = 0.0237). There were more mesenchymal CTCs in pulmonary vein for patients with KRAS mutant and BRAF mutant than in patients with full wild-type gene (P = 0.073 and P = 0.0381). There were fewer mesenchymal CTCs in pulmonary vein for patients with EGFR mutant than in patients with full wild-type gene (P = 0.0898). Conclusions: The patients with high number of CTCs, MCTCs, or PD-L1 (+) CTCs in pulmonary vein experienced poor prognosis of DFS. There are obvious correlations between the CTC subtype of NSCLC and the gene subgroups of tumor tissue.
Collapse
Affiliation(s)
- Jingsi Dong
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Daxing Zhu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Tang
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Qiu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Lu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingjie Li
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Lin
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Dong J, Li B, Lin D, Zhou Q, Huang D. Advances in Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer Based on Accurate Molecular Typing. Front Pharmacol 2019; 10:230. [PMID: 30930778 PMCID: PMC6424010 DOI: 10.3389/fphar.2019.00230] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 02/05/2023] Open
Abstract
The essence of precision medicine is to achieve the goal of “individualized treatment” through genotyping of patients and targeted therapy. At present, the pathogenic genes of non-small cell lung cancer (NSCLC) have been studied most thoroughly and targeted therapy based on genotyping has been the most successful. This paper focuses on the precision treatment of NSCLC based on genotyping, comparing gene detection methods and summarize the latest progress of NSCLC immunotherapy.
Collapse
Affiliation(s)
- Jingsi Dong
- Lung Cancer Center of West China Hospital, Sichuan University, Chengdu, China
| | - Bingjie Li
- Lung Cancer Center of West China Hospital, Sichuan University, Chengdu, China
| | - Dan Lin
- Lung Cancer Center of West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Lung Cancer Center of West China Hospital, Sichuan University, Chengdu, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| |
Collapse
|
15
|
Hou L, Ju L, Wang J, Zhou T, Shen Y, Chi J, Armand JP, Xu A, Hu K. Use of traditional Chinese medicine in the treatment of immune-related adverse events of cancer immunotherapy. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|