1
|
Lechuga-Crespo JL, Ruiz-Romera E, Probst JL, Unda-Calvo J, Cuervo-Fuentes ZC, Sánchez-Pérez JM. Combining punctual and high frequency data for the spatiotemporal assessment of main geochemical processes and dissolved exports in an urban river catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138644. [PMID: 32498214 DOI: 10.1016/j.scitotenv.2020.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The assessment of dissolved loadings and the sources of these elements in urban catchments' rivers is usually measured by punctual sampling or through high frequency sensors. Nevertheless, the combination of both methodologies has been less common even though the information they give is complementary. Major ion (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and alkalinity), organic matter (expressed as Dissolved Organic Carbon, DOC), and nutrients (NO3-, and PO43-) are punctually measured in the Deba river urban catchment (538 km2), in the northern part of the Iberian Peninsula (draining to the Bay of Biscay). Discharge, precipitation, and Electrical Conductivity (EC) are registered with a high frequency (10 min) in three gauging stations. The combination of both methodologies has allowed the assessment of major geochemical processes and the extent of impact of anthropogenic input on major composition of riverine water, as well as its spatial and temporal evolution. Three methodologies for loading estimation have been assessed and the error committed in the temporal aggregation is quantified. Results have shown that, even though carbonates dominate the draining area, the water major ion chemistry is governed by an evaporitic spring in the upper part of the catchment, while anthropogenic input is specially noted downstream of three wastewater treatment plants, in all nutrients and organic matter. The results of the present work illustrate how the combination of two monitoring methodologies allows for a better assessment of the spatial and temporal evolution on the major water quality in an urban catchment.
Collapse
Affiliation(s)
- Juan Luis Lechuga-Crespo
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain; ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France.
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain.
| | - Jean-Luc Probst
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France
| | - Jessica Unda-Calvo
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Zaira Carolina Cuervo-Fuentes
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - José Miguel Sánchez-Pérez
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France
| |
Collapse
|
2
|
Anderson OR. Atmospheric respiratory CO 2 efflux by aquatic suspended particle-bound microbial communities: A laboratory experimental study. Heliyon 2019; 5:e02816. [PMID: 31763477 PMCID: PMC6859224 DOI: 10.1016/j.heliyon.2019.e02816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/14/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
Natural sources of atmospheric CO2 are of increasing interest as possible contributors to global climate warming. This study documents the amount of respiratory CO2 contributed by microbial communities associated with suspended particulates in aquatic water columns. Microcosms containing three different sources of water (pond freshwater, NY East River estuary and Hudson River estuary) were used to experimentally determine the atmospheric respiratory CO2 released from particle-associated microbes. Two different approaches were used. In the first, finely powdered dried cereal leaves (alfalfa) were added to each of the three microcosms as a consistent source of particulate organic matter (POM). In the second, only Hudson River estuary water samples were used with natural densities of POM. Respiration rates associated with two sizes of particles were assessed: 1) ≥ 200 μm and 2) ≥ 50 μm but less than 200 μm. The total respiration rate for the three microcosms with cereal leaf POM ranged from 5.09 to 14.87 μmol CO2 min−1 L−1. Of this, the amount contributed by larger particulates was in the range of 55–63%; and for smaller particulates ranged from 18 to 32 %. Data for microcosms containing water from the Hudson River estuary, with natural particulates, was as follows: total respiration ranged from ∼3 μmol CO2 min−1 L−1 to ∼3.73 μmol CO2 min−1 L−1. Larger particulates contributed approximately 40% of total respiration, and that of smaller particulates was substantially less (4–5% of total). Overall, these results indicate that microbial communities associated with particulates in the water column (especially larger particulates) may contribute substantial amounts of CO2 to the atmosphere.
Collapse
Affiliation(s)
- O Roger Anderson
- Biology and Paleoecology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA
| |
Collapse
|
3
|
Coupling between Hydrodynamics and Chlorophyll a and Bacteria in a Temperate Estuary: A Box Model Approach. WATER 2019. [DOI: 10.3390/w11030588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatial patterns of chlorophyll a and bacteria were assessed in a temperate Atlantic tidal estuary during seasonal surveys, as well as in consecutive summer spring and neap tides. A box model approach was used to better understand spatial and temporal dynamics of these key estuarine descriptors. The Lima estuary (NW Portugal) was divided into boxes controlled by salinity and freshwater discharge and balance equations were derived for each variable, enabling the calculation of horizontal and vertical fluxes of plankton and, therefore, production or consumption rates. Chlorophyll a tended to burst within the oligohaline zone, whereas higher counts of bacteria were found in the mesohaline stretch. Whenever the water column was stratified, similar tide-independent trends were found for chlorophyll a and bacterial fluxes, with net growth in the upper less saline boxes, and consumption beneath the halocline. In the non-stratified upper estuary, other controls emerged for chlorophyll a and bacteria, such as nitrogen and carbon inputs, respectively. The presented results show that, while tidal hydrodynamics influenced plankton variability, production/consumption rates resulted from the interaction of additional factors, namely estuarine geomorphological characteristics and nutrient inputs. In complex estuarine systems, the rather simple box model approach remains a useful tool in the task of understanding the coupling between hydrodynamics and the behavior of plankton, emerging as a contribution toward the management of estuarine systems.
Collapse
|
4
|
Pan H, Jiang J, Fan X, Al-Farraj SA, Gao S. Phylogeny and taxonomy of five poorly known species of cyrtophorian ciliates (Protozoa: Ciliophora: Phyllopharyngea) from China Seas. Zool J Linn Soc 2016. [DOI: 10.1093/zoolinnean/zlw006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|