1
|
Palmas F, Casula P, Curreli F, Podda C, Cabiddu S, Sabatini A. Exploring Less Invasive Visual Surveys to Assess the Spatial Distribution of Endangered Mediterranean Trout Population in a Small Intermittent Stream. BIOLOGY 2023; 12:1000. [PMID: 37508429 PMCID: PMC10376087 DOI: 10.3390/biology12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Monitoring the conservation status of endangered freshwater fish using less invasive methods poses challenges for ecologists and conservationists. Visual surveys have been proposed as an alternative to electrofishing, which is a standard methodology that can cause injuries, physiological stress and post-release mortality in organisms. To test the efficacy of visual methods, a study was conducted in an intermittent stream of Sardinia (Italy). Two visual methods were employed: a visual survey from streambanks (VSS) and an underwater visual survey (UVS) using cameras. The aims of this study were (1) to compare the effectiveness of these methods in detecting patch occupancy patterns and (2) to investigate the effect of environmental variables on the detection probability of Mediterranean native trout. Environmental variables characterizing pool habitats were recorded, and generalized linear models (GLMs) were employed to assess the correlation between these variables and trout presence/absence. GLM analysis revealed that UVS had higher detection probability with larger pool volume, whereas submerged macrophytes negatively affected detection probability. Detection from streambanks (VVS) was negatively affected by a high turbulence rate. In conclusion, our study suggests the utility of visual methods to describe patterns of patch occupancy of Mediterranean trout. However, methods can be differently affected by environmental variables. Therefore, monitoring programs using these methods should consider these factors to ensure a reliable description of within-stream trout distribution in intermittent streams.
Collapse
Affiliation(s)
- Francesco Palmas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
| | - Paolo Casula
- Agenzia Forestas, Servizio Tecnico, Viale Merello 86, 09124 Cagliari, Italy
| | - Francesco Curreli
- Agenzia Forestas, Servizio Tecnico, Viale Merello 86, 09124 Cagliari, Italy
| | - Cinzia Podda
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
| | - Serenella Cabiddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
| | - Andrea Sabatini
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, 09126 Cagliari, Italy
| |
Collapse
|
2
|
Delling B, Thörn F, Norén M, Irestedt M. Museomics reveals the phylogenetic position of the extinct Moroccan trout Salmo pallaryi. JOURNAL OF FISH BIOLOGY 2023; 102:619-627. [PMID: 36602189 DOI: 10.1111/jfb.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The authors used museomics to reconstruct the mitochondrial genome from two individuals of the Moroccan, endemic and extinct trout, Salmo pallaryi. They further obtained partial data from 21 nuclear genes previously used for trout phylogenetic analyses. Phylogenetic analyses, including publicly available data from the mitochondrial control region and the cytochrome b gene, and the 21 nuclear genes, place S. pallaryi among other North African trouts. mtDNA places S. pallaryi close to Salmo macrostigma within a single North African clade. Although the nuclear coverage of the genome was low, both specimens were independently positioned as sisters to one of two distantly related North African clades, viz. the Atlas clade with the Dades trout, Salmo multipunctatus. Phylogenetic discordance between mtDNA and nuclear DNA phylogenies is briefly discussed. As several specimens that were extracted failed to produce DNA of sufficient quality, the authors discuss potential reasons for the failure. They suggest that museum specimens in poor physical condition may be better for DNA extraction compared to better-preserved ones, possibly related to the innovation of formalin as a fixative before ethanol storage in the early 20th century.
Collapse
Affiliation(s)
- Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Filip Thörn
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael Norén
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
3
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
4
|
Phylogeography of Sarmarutilus rubilio (Cypriniformes: Leuciscidae): Complex Genetic Structure, Clues to a New Cryptic Species and Further Insights into Roaches Phylogeny. Genes (Basel) 2022; 13:genes13061071. [PMID: 35741833 PMCID: PMC9222716 DOI: 10.3390/genes13061071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Italy hosts a large number of endemic freshwater fish species due to complex geological events which promoted genetic differentiation and allopatric speciation. Among them, the South European roach Sarmarutilus rubilio inhabits various freshwater environments in three different ichthyogeographic districts. We investigated the genetic diversity of S. rubilio using two different mitochondrial markers (COI and CR), aiming to define its relationship with other similar taxa from the Balkan area and, from a phylogeographic perspective, test the effects of past hydrogeological dynamics of Italian river basins on its genetic structure and demographic history. Our analysis highlighted a marked genetic divergence between S. rubilio and all other roach species and, among Italian samples, revealed the existence of three deeply divergent geographic haplogroups, named A, B and C. Haplogroup C likely corresponds to a new putative cryptic species and is located at the northern border of the South European roach range; haplogroup B is restricted to Southern Italy; and haplogroup A is widespread across the entire range and in some sites it is in co-occurrence with C or B. Their origin is probably related to the tectonic uplifting of the Apuan Alps in the north and of the Colli Albani Volcano in the south during the Pleistocene, which promoted isolation and vicariance followed by secondary contacts.
Collapse
|
5
|
Polgar G, Iaia M, Righi T, Volta P. The Italian Alpine and Subalpine trouts: Taxonomy, Evolution, and Conservation. BIOLOGY 2022; 11:biology11040576. [PMID: 35453775 PMCID: PMC9026872 DOI: 10.3390/biology11040576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In a great part of the world, trout fishing has long inspired human spiritual ideals of immersion into nature and recreation, far removed from the fast-encroaching urbanization. Concurrently, these values and emotions fueled a white-hot business, establishing a florid market of outdoor recreation. Since the 20th century, the trout-culture industry strived to provide anglers with fishing entertainment by stocking massive amounts of non-native trouts in dozens of countries, irrespective of the lakes’ and rivers’ carrying capacity. This had dire consequences on the structural and functional diversity of these ecosystems. “Trout wars” sparked throughout the world between the promoters of stocking activities and the promoters of “wild trout management” and ethics. The “Italian trout war” has been fought on the harsh battleground of trout taxonomy, ecology, distribution, and native vs. non-native interfertile species. Northern Italy, home to the Italian Alpine and subalpine trouts and economic center of the national trout-culture and stocking industry, was particularly affected by this clash. We review here the state of art of this ongoing debate, outlining our scientific view of the taxonomy, evolution, distribution, and sustainable management of the native Italian trouts of northern Italy. Abstract During the last 150 years, the trout-culture industry focused on enhancing trout populations by stocking, in response to the growing anglers’ demand and the habitat degradation associated to the rapid urbanization and hydropower development. The industrialized north of Italy, home to the Italian Alpine and subalpine trout populations, is the source of most of the revenues of the national trout-culture industry. Its rapid growth, and the massive introduction of non-native interfertile trouts eroded the genetic diversity of native lineages, leading to harsh confrontations between scientists, institutions, and sportfishing associations. We review here the state of the art of the taxonomy and distribution of the northern Italian native trouts, presenting both scientific results and historical documentation. We think the only native trouts in this region are Salmo marmoratus, widespread in this region, plus small and fragmented populations of S. ghigii, present only in the South-western Alps. We strongly recommend the interruption of stocking of domesticated interfertile non-native trouts in this area, and recommend the adoption of Evolutionary Significant Units for salmonid fishery management. We further propose future research directions for a sustainable approach to the conservation and ecosystem management of the fishery resources and inland waters of northern Italy.
Collapse
|
6
|
Genetic and Phenotypic Characteristics of the Salmo trutta Complex in Italy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salmonid fish have become ecological and research models of study in the field of conservation genetics and genomics. Over the last decade, brown trout have received a high level of interest in research and publications. The term Salmo trutta complex is used to indicate the large number of geographic forms present in the species Salmo trutta. In Europe, the S. trutta complex consists (based on mitochondrial DNA control region analysis) of seven major evolutionary lineages: Atlantic (AT), Mediterranean (ME), Adriatic (AD), Danubian (DA), Marmoratus (MA), Duero (DU) and Tigris (TI). In several nations, the difficulty of identifying some lineages derives from their wide phenotypic and geographic plasticity and the presence of mixed lineages (due to introgressive hybridization with domestic AT populations). In Italy, the S. trutta complex populations living in the Tyrrhenian area and on the main islands (Sicily, Sardinia and Corsica) showed high genetic diversity. Currently, on the Italian Red List, the protected (near threatened) populations are the AD and ME lineages. Recent studies based on traditional (mitochondrial and nuclear markers) and NGS (next-generation sequencing) analyses have clarified some genetic differences between the populations of the Tyrrhenian region, Sicily, Sardinia and Corsica. Native populations in Sardinia belong to the AD lineage, while those living in Corsica are mainly characterized by the AD, MA and ME haplotypes. In Sicily, in the area of the Iblei mountains, an AT lineage (North African) exists. According to some authors, the term Salmo macrostigma should only be used for populations in North Africa. The use of genotyping methods based on mtDNA and nuclear markers and the latest generation sequencing techniques can improve the study of populations and evolutionary lineages in areas where there are overlaps and hybridization phenomena.
Collapse
|
7
|
Conservation Genetics of Mediterranean Brown Trout in Central Italy (Latium): A Multi-Marker Approach. WATER 2022. [DOI: 10.3390/w14060937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown trout is considered a complex of incipient species, including several phylogenetic lineages, whose natural distribution in the Mediterranean area has been altered, since the beginning of the 1900s, by massive introductions of domestic strains of Atlantic origin to support fisheries. Introduced trout naturalize in new suitable environments and extensively hybridize with native populations. Here, we characterized putatively neutral and adaptive genetic variability and population structure of Mediterranean brown trout from six river catchments in central peninsular Italy, as revealed by both mitochondrial (Control Region) and nuclear (microsatellites, LDH-C1, major histocompatibility complex) markers. We quantified the admixture of wild populations with hatchery strains and evaluated the effects of domestic trout introductions on shaping population genetics. Our analyses indicated: (1) a composite picture of genetic variability in the area, with the presence of all native Mediterranean trout mitochondrial lineages (“Adriatic”, “Mediterranean”, “marmoratus”), various frequencies of allochthonous genotypes and different rates of introgression among sampling sites; (2) asymmetric mito-nuclear introgression; (3) increasing nuclear marker diversity with increasing levels of admixture across populations; (4) strong population structure coupled with relatively low effective population size. Data allowed the identification of five management units and we propose specific actions to support ongoing and future conservation strategies within the examined area.
Collapse
|
8
|
Berrebi P, Jesenšek D, Laporte M, Crivelli AJ. Restoring marble trout genes in the Soča River (Slovenia). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Turan D, Aksu İ, Oral M, Kaya C, Bayçelebi E. Contribution to the trout of Euphrates River, with description of a new species, and range extension of Salmo munzuricus (Salmoniformes, Salmonidae). ZOOSYST EVOL 2021. [DOI: 10.3897/zse.97.72181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an effort to reveal the Euphrates trout taxonomy, the Karasu River, which is one of the eastern drainages of the river, was investigated and three independent populations were identified. Result revealed that two populations belonged to Salmo munzuricus, which was known only in Munzur River, while the other population belonged to an unnamed species. Salmo baliki, a new species, is described from the Murat River, a drainage of Euphrates River. It differs from Salmo species in adjacent water by the combination of the following characters: a grayish body; commonly one, rarely two pale black spots behind eye and on cheek; two to seven black spots on opercle; a few black spots on back and upper part of flank, missing on predorsal area; few to numerous large irregular-shaped red spots in median, upper and lower part of flank, surrounded by a large irregular-shaped white ring; the number of black and red spots not increasing in parallel with size; maxilla short and narrow; adipose-fin medium size, no or rarely one or two red spot its posterior edge; 107–118 lateral line scales; 24–28 scales rows between dorsal-in origin and lateral line; 18–22 scale rows between lateral line and anal–fin origin; maxilla length 7.7–9.1% SL in males, 8.2–9.6 in females. Finally, the genetic study of the Cyt b mitochondrial gene confirmed the morphological data, suggesting the separation of S. baliki from other Salmo species.
Collapse
|
10
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
11
|
Hashemzadeh Segherloo I, Freyhof J, Berrebi P, Ferchaud AL, Geiger M, Laroche J, Levin BA, Normandeau E, Bernatchez L. A genomic perspective on an old question: Salmo trouts or Salmo trutta (Teleostei: Salmonidae)? Mol Phylogenet Evol 2021; 162:107204. [PMID: 34015446 DOI: 10.1016/j.ympev.2021.107204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
There are particular challenges in defining the taxonomic status of recently radiated groups due to the low level of phylogenetic signal. Members of the Salmo trutta species-complex, which mostly evolved during and following the Pleistocene, show high morphological and ecological diversity that, along with their very wide geographic distribution, have led to morphological description of 47 extant nominal species. However, many of these species have not been supported by previous phylogenetic studies, which could be partly due to lack of significant genetic differences among them, the limited resolution offered by molecular methods previously used, as well as the often local scale of these studies. The development of next-generation sequencing (NGS) and related analytical tools have enhanced our ability to address such challenging questions. In this study, Genotyping-by-Sequencing (GBS) of 15,169 filtered SNPs and mitochondrial DNA (mtDNA) D-loop sequences were combined to assess the phylogenetic relationships among 166 brown trouts representing 21 described species and three undescribed groups collected from 84 localities throughout their natural distribution in Europe, west Asia, and North Africa. The data were analysed using different clustering algorithms (admixture analysis and discriminant analysis of principal components-DAPC), a Bayes Factor Delimitation (BFD) test, species tree reconstruction, gene flow tests (three- and four-population tests), and Rogue taxa identification tests. Genomic contributions of the Atlantic lineage brown trout were found in all major sea basins excluding the North African and Aral Sea basins, suggesting introgressive hybridization of native brown trouts driven by stocking using strains of the Atlantic lineage. After removing the phylogenetic noise caused by the Atlantic brown trout, admixture clusters and DAPC clustering based on GBS data, respectively, resolved 11 and 13 clusters among the previously described brown trout species, which were also supported by BFD test results. Our results suggest that natural hybridization between different brown trout lineages has probably played an important role in the origin of several of the putative species, including S. marmoratus, S. carpio, S. farioides, S. pellegrini, S. caspius (in the Kura River drainage) and Salmo sp. in the Danube River basin. Overall, our results support a multi-species taxonomy for brown trouts. They also resolve some species in the Adriatic-Mediterranean and Black Sea drainages as members of very closely related genomic clusters that may need taxonomic revision. However, any final conclusions pertaining to the taxonomy of the brown trout complex should be based on an integrative approach combining genomic, morphological, and ecological data. To avoid challenges in taxonomy and conservation of species complexes like brown trouts, it is suggested to describe species based on genomic clusters of populations instead of describing species based only on morphologically differentiated single type populations.
Collapse
Affiliation(s)
- Iraj Hashemzadeh Segherloo
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahr-e-Kord University, Shahr-e-Kord, Iran; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada.
| | - Jörg Freyhof
- Museum für Naturkunde Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Patrick Berrebi
- Genome - Research & Diagnostic, 697 avenue de Lunel, 34400 Saint-Just, France
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Matthias Geiger
- Zoologisches Forschungsmuseum Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, 53133 Bonn, Germany
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Boris A Levin
- Papanin Institute of Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia & Cherepovets State University, Cherepovets, Vologda Region, Russia
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
12
|
Gaffaroglu M, Majtánová Z, Symonová R, Pelikánová Š, Unal S, Lajbner Z, Ráb P. Present and Future Salmonid Cytogenetics. Genes (Basel) 2020; 11:E1462. [PMID: 33291343 PMCID: PMC7762217 DOI: 10.3390/genes11121462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Salmonids are extremely important economically and scientifically; therefore, dynamic developments in their research have occurred and will continue occurring in the future. At the same time, their complex phylogeny and taxonomy are challenging for traditional approaches in research. Here, we first provide discoveries regarding the hitherto completely unknown cytogenetic characteristics of the Anatolian endemic flathead trout, Salmo platycephalus, and summarize the presently known, albeit highly complicated, situation in the genus Salmo. Secondly, by outlining future directions of salmonid cytogenomics, we have produced a prototypical virtual karyotype of Salmo trutta, the closest relative of S. platycephalus. This production is now possible thanks to the high-quality genome assembled to the chromosome level in S. trutta via soft-masking, including a direct labelling of repetitive sequences along the chromosome sequence. Repetitive sequences were crucial for traditional fish cytogenetics and hence should also be utilized in fish cytogenomics. As such virtual karyotypes become increasingly available in the very near future, it is necessary to integrate both present and future approaches to maximize their respective benefits. Finally, we show how the presumably repetitive sequences in salmonids can change the understanding of the overall relationship between genome size and G+C content, creating another outstanding question in salmonid cytogenomics waiting to be resolved.
Collapse
Affiliation(s)
- Muhammet Gaffaroglu
- Department of Molecular Biology and Genetics, Faculty of Science, University of Ahi Evran, Kirsehir 40200, Turkey;
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (Z.M.); (Š.P.); (P.R.)
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (Z.M.); (Š.P.); (P.R.)
| | - Sevgi Unal
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin 74000, Turkey;
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology, Graduate University, Onna, Okinawa 904 0495, Japan;
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (Z.M.); (Š.P.); (P.R.)
| |
Collapse
|
13
|
Splendiani A, Berrebi P, Tougard C, Righi T, Reynaud N, Fioravanti T, Lo Conte P, Delmastro GB, Baltieri M, Ciuffardi L, Candiotto A, Sabatini A, Caputo Barucchi V. The role of the south-western Alps as a unidirectional corridor for Mediterranean brown trout (Salmo truttacomplex) lineages. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractThe role of the south-western Alps as a corridor for Mediterranean trout (Salmo trutta complex Linnaeus, 1758) was evaluated in order to understand the influence of the last glacial events in shaping the spatial distribution of the genetic diversity of this salmonid. For this, the allochthonous hypothesis of a man-mediated French origin (19th century) of the Mediterranean trout inhabiting the Po tributaries in the Italian side of the south-western Alps was tested. A total of 412 individuals were analysed at the mitochondrial control region. The phylogenetic classification was carried out by using a Median-Joining Network analysis. Mismatch pair-wise analysis, molecular dating and Kernel density distribution analysis of the main mitochondrial lineages were evaluated to compare past demographic dynamics with the current spatial distribution of genetic diversity. The main outcomes resulted strongly in agreement with a biogeographic scenario where the south-western Alps acted as a unidirectional corridor that permitted the colonization of the upper Durance (Rhône River basin) by trout from the Po River basin. Therefore, the Mediterranean trout should be considered as native also along the Italian side of the south-western Alps and the allochthonous hypothesis should be rejected.
Collapse
Affiliation(s)
- Andrea Splendiani
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Patrick Berrebi
- Genome - R&D, Saint-Just, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | - Tommaso Righi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Nathalie Reynaud
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Tatiana Fioravanti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Lo Conte
- Funzione Specializzata Tutela Fauna e Flora, Città Metropolitana di Torino, Torino, Italy
| | - Giovanni B Delmastro
- Laboratorio di Ittiologia e Biol. Acque, Museo Civico di Storia Naturale, Carmagnola, Italy
| | - Marco Baltieri
- ATAAI-Associazione Tutela Ambienti Acquatici e Ittiofauna, Luserna San Giovanni, Italy
| | | | | | - Andrea Sabatini
- Department of Life and Environmental Science, University of Cagliari, Cagliari, Italy
| | - Vincenzo Caputo Barucchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
14
|
Škraba Jurlina D, Marić A, Mrdak D, Kanjuh T, Špelić I, Nikolić V, Piria M, Simonović P. Alternative Life-History in Native Trout (Salmo spp.) Suppresses the Invasive Effect of Alien Trout Strains Introduced Into Streams in the Western Part of the Balkans. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Carosi A, Ghetti L, Padula R, Lorenzoni M. Population status and ecology of the Salmo trutta complex in an Italian river basin under multiple anthropogenic pressures. Ecol Evol 2020; 10:7320-7333. [PMID: 32760531 PMCID: PMC7391546 DOI: 10.1002/ece3.6457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Salmonids inhabiting Mediterranean rivers are of particular concern for biodiversity conservation, as they are threatened by various stressors, including habitat alterations, overfishing, climate change, and introgressive hybridization with alien species. In the Tiber River basin (Central Italy), genetic introgression phenomena of the native Salmo cettii with the non-native Salmo trutta hinder the separate analysis of the two species, which are both included in the S. trutta complex. Little is known about the factors currently limiting the trout populations in this area, particularly with respect to climate change. With the intention of filling this gap, the aims of the current study were to (a) quantify changes in the climate and (b) analyze the distribution, status, and ecology of trout populations, in the context of changing abiotic conditions over the last decades. Fish stock assessments were carried out by electrofishing during three census periods (1998-2004, 2005-2011, and 2012-2018) at 129 sites. The trend over time of meteorological parameters provided evidence for increased air temperature and decreased rainfall. Multivariate analysis of trout densities and environmental data highlighted the close direct correlation of trout abundance with water quality, altitude, and current speed. Climate-induced effects observed over time in the sites where trout were sampled have not yet led to local extinctions or distribution shifts, indicating a marked resilience of trout, probably due to the buffering effect of intrinsic population dynamics. Decreasing body conditions over time and unbalanced age structures support the hypothesis that variations in hydraulic regime and water temperature could overcome these compensatory effects, which may lead to a severe decline in trout populations in the near future. In a climate change context, habitat availability plays a key role in the distribution of cold-water species, which often do not have the possibility to move upstream to reach their thermal optimum because of water scarcity in the upper river stretches.
Collapse
Affiliation(s)
- Antonella Carosi
- Department of Chemistry, Biology, and BiotechnologiesUniversity of PerugiaPerugiaItaly
| | - Lucia Ghetti
- Forest, Economics, and Mountain Territory ServicePerugiaItaly
| | - Rosalba Padula
- Centre for Climate Change and Biodiversity in Lakes and Wetlands of Arpa UmbriaPerugiaItaly
| | - Massimo Lorenzoni
- Department of Chemistry, Biology, and BiotechnologiesUniversity of PerugiaPerugiaItaly
| |
Collapse
|
16
|
Splendiani A, Palmas F, Sabatini A, Caputo Barucchi V. The name of the trout: considerations on the taxonomic status of the Salmo trutta L., 1758 complex (Osteichthyes: Salmonidae) in Italy. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1686544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A. Splendiani
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - F. Palmas
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - A. Sabatini
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - V. Caputo Barucchi
- DiSVA, Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
17
|
Rossi AR, Petrosino G, Milana V, Martinoli M, Rakaj A, Tancioni L. Genetic identification of native populations of Mediterranean brown trout Salmo trutta L. complex (Osteichthyes: Salmonidae) in central Italy. THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1686077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- A. R. Rossi
- Department of Biology and Biotechnology C. Darwin, University of Rome “La Sapienza”, Rome, Italy
| | - G. Petrosino
- Department of Biology and Biotechnology C. Darwin, University of Rome “La Sapienza”, Rome, Italy
| | - V. Milana
- Department of Biology and Biotechnology C. Darwin, University of Rome “La Sapienza”, Rome, Italy
| | - M. Martinoli
- Experimental Ecology and Aquaculture Laboratory, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - A. Rakaj
- Experimental Ecology and Aquaculture Laboratory, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - L. Tancioni
- Experimental Ecology and Aquaculture Laboratory, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
18
|
Saint-Pé K, Leitwein M, Tissot L, Poulet N, Guinand B, Berrebi P, Marselli G, Lascaux JM, Gagnaire PA, Blanchet S. Development of a large SNPs resource and a low-density SNP array for brown trout (Salmo trutta) population genetics. BMC Genomics 2019; 20:582. [PMID: 31307373 PMCID: PMC6631668 DOI: 10.1186/s12864-019-5958-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Background The brown trout (Salmo trutta) is an economically and ecologically important species for which population genetic monitoring is frequently performed. The most commonly used genetic markers for this species are microsatellites and mitochondrial markers that lack replicability among laboratories, and a large genome coverage. An alternative that may be particularly efficient and universal is the development of small to large panels of Single Nucleotide Polymorphism markers (SNPs). Here, we used Restriction site Associated DNA sequences (RADs) markers to identify a set of 12,204 informative SNPs positioned on the brown trout linkage map and suitable for population genetics studies. Then, we used this novel resource to develop a cost-effective array of 192 SNPs (96 × 2) evenly spread on this map. This array was tested for genotyping success in five independent rivers occupied by two main brown trout evolutionary lineages (Atlantic -AT- and Mediterranean -ME-) on a total of 1862 individuals. Moreover, inference of admixture rate with domestic strains and population differentiation were assessed for a small river system (the Taurion River, 190 individuals) and results were compared to a panel of 13 microsatellites. Results A high genotyping success was observed for all rivers (< 1% of non-genotyped loci per individual), although some initially used SNP failed to be amplified, probably because of mutations in primers, and were replaced. These SNPs permitted to identify patterns of isolation-by-distance for some rivers. Finally, we found that microsatellite and SNP markers yielded very similar patterns for population differentiation and admixture assessments, with SNPs having better ability to detect introgression and differentiation. Conclusions The novel resources provided here opens new perspectives for universality and genome-wide studies in brown trout populations. Electronic supplementary material The online version of this article (10.1186/s12864-019-5958-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keoni Saint-Pé
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d'Ecologie Théorique et Expérimentale, SETE, UMR 5321, 2 route du CNRS, 09200, Moulis, France.
| | - Maeva Leitwein
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Laurence Tissot
- EDF R and D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 quai Watier, 78401, Chatou Cedex, France
| | - Nicolas Poulet
- Pôle écohydraulique AFB-IMT, allée du Pr Camille Soula, 31400, Toulouse, France
| | - Bruno Guinand
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Patrick Berrebi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France.,Present address: Genome - Research and Diagnostic, 697 avenue de Lunel, 34400, Saint-Just, France
| | - Geoffrey Marselli
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d'Ecologie Théorique et Expérimentale, SETE, UMR 5321, 2 route du CNRS, 09200, Moulis, France
| | | | | | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d'Ecologie Théorique et Expérimentale, SETE, UMR 5321, 2 route du CNRS, 09200, Moulis, France.,Université de Toulouse, UPS, UMR 5174 (EDB), 118 route de Narbonne, F-31062, Toulouse cedex 4, France
| |
Collapse
|
19
|
Splendiani A, Giovannotti M, Righi T, Fioravanti T, Cerioni PN, Lorenzoni M, Carosi A, La Porta G, Barucchi VC. Introgression despite protection: the case of native brown trout in Natura 2000 network in Italy. CONSERV GENET 2019. [DOI: 10.1007/s10592-018-1135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|