1
|
Identification of quantitative trait loci for growth traits in red swamp crayfish (Procambarus clarkii). AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Patterns of Performance Variation Between Animal Hybrids and their Parents: A Meta-analysis. Evol Biol 2022. [DOI: 10.1007/s11692-022-09585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractHybridization is a widespread phenomenon in animals, and hybrid heterosis/breakdown could be key processes determining the evolutionary dynamics of hybrids. Indeed, hybrids are not consistently disadvantaged compared to the parental lineages, as was historically assumed. Multiple processes could lead to performance differences between parental lineages and their hybrids. Despite many studies evaluated the performance of hybrids, a quantitative synthesis is required to assess the general pattern. Here we used meta-analytic and meta-regression approaches to quantify the fitness differences between parental lineages and their hybrids, and to identify possible processes that could lead to these differences. Specifically, we tested biological and methodological parameters that could determine differences in performance between hybrids and parental lineages. Hybrid performance was extremely variable across studies, being often significantly higher or lower compared to the mean performance of their parents. Nevertheless, the averaged hybrid performance was similar to the fitness of parental lineages, with differences across studies related to how performance was assessed. Genetic divergence between parental lineages, and the approach used to identify hybrids were the parameters most strongly related to variation in hybrid performance. Performance was lower for hybrids between distantly related lineages. Furthermore, study settings and the use of imprecise approaches for hybrid identification (e.g. morphology-based) can bias assessments of performance. Studies performed on wild populations and using genetic approaches for hybrid identification detected more often a decreased hybrid performance, compared to laboratory studies. We highlight the importance of appropriate settings for a realistic understanding of the evolutionary impacts of hybridization.
Collapse
|
3
|
Xiao W, Chen B, Wang J, Zou Z, Wang C, Li D, Zhu J, Yu J, Yang H. Integration of mRNA and miRNA Profiling Reveals Heterosis in Oreochromis niloticus × O. aureus Hybrid Tilapia. Animals (Basel) 2022; 12:640. [PMID: 35268207 PMCID: PMC8909811 DOI: 10.3390/ani12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
Heterosis is a widespread biological phenomenon in fishes, in which hybrids have superior traits to parents. However, the underlying molecular basis for heterosis remains uncertain. Heterosis in growth and survival rates is apparent in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂). Comparisons of growth and hematological biochemical characteristics and mRNA and miRNA transcriptional analyses were performed in hybrid and parents tilapia stocks to investigate the underlying molecular basis for heterosis. Growth characteristics and hematological glucose and cholesterol parameters were significantly improved in hybrids. Of 3097 differentially expressed genes (DEGs) and 120 differentially expressed miRNAs (DEMs) identified among three stocks (O. niloticus, O. aureus, and hybrids), 1598 DEGs and 62 DEMs were non-additively expressed in hybrids. Both expression level dominance and overdominance patterns occurred for DEGs and DEMs, indicating that dominance and overdominance models are widespread in the transcriptional and post-transcriptional regulation of genes involved in growth, metabolism, immunity, and antioxidant capacity in hybrid tilapia. Moreover, potential negative regulation networks between DEMs and predicted target DEGs revealed that most DEGs from miRNA-mRNA pairs are up-regulated. Dominance and overdominance models in levels of transcriptome and miRNAome facilitate the integration of advantageous parental alleles into hybrids, contributing to heterosis of growth and improved survival. The present study provides new insights into molecular heterosis in hybrid tilapia, advancing our understanding of the complex mechanisms involved in this phenomenon in aquatic animals.
Collapse
Affiliation(s)
- Wei Xiao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Binglin Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Zhiying Zou
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; (W.X.); (J.W.)
| | - Dayu Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jinglin Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jie Yu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Hong Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| |
Collapse
|