1
|
Cicha-Wojciechowicz D, Frank S, Steinhaus M, Majcher MA. Key Odorants Forming Aroma of Polish Mead: Influence of the Raw Material and Manufacturing Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10548-10557. [PMID: 38670543 PMCID: PMC11082928 DOI: 10.1021/acs.jafc.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Mead was analyzed by using the concept of molecular sensory science for the identification of key odorants. A total of 29 odor-active compounds were identified in mead by using gas chromatography olfactometry (GCO). Flavor dilution (FD) factors of identified compounds ranged from 1 to 16,384, compounds with FD factors ≥32 were quantitated by using stable isotopically substituted odorants as internal standards or external standard method, and odor activity values (OAVs) were calculated. Fifteen compounds showed OAVs ≥1: aldehydes (2-phenylacetaldehyde, 3-(methylsulfanyl)propanal), 4-hydroxy-3-methoxybenzaldehyde), esters (ethyl 3-methylbutanoate, ethyl propanoate, ethyl octanoate), alcohols (2-phenylethan-1-ol, 3- and 2-methylbutan-1-ol, 3-(methylsulyfanyl)propan-1-ol), furanons (4-hydroxy-2,5-dimethylfuran-3(2H)-one, 3-hydroxy-4,5-dimethylfuran-2(5H)-one), acids (3- and 2-methylbutanoic acid, acetic acid), 1,1-diethoxyethane, and 4-methylphenol. 2-Phenylacetaldehyde (OAV, 3100) was suggested as the compound with the biggest influence on the aroma of mead, followed by 4-hydroxy-2,5-dimethylfuran-3(2H)-one (OAV, 1900), 3-(methylsulfanyl)propanal (OAV, 890), and 2-phenylethan-1-ol (OAV, 680). Quantitative olfactory profile analysis revealed strong honey, malty, and alcoholic impressions. Omission experiments revealed that 3-(methylsulfanyl)propanal, 2-phenylethan-1-ol, 4-hydroxy-2,5-dimethylfuran-3(2H)-one, ethyl propanoate, ethyl 3-methylbutanoate, 2-phenylacetaldehyde, 3- and 2-methylbutanoic acid, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde were the key odorants in the mead. Determining concentrations of key odorants in important production steps showed that the fermentation and maturation stages had the strongest effect on the formation of mead aroma.
Collapse
Affiliation(s)
- Daria Cicha-Wojciechowicz
- Faculty
of Food Science and Nutrition, Poznań
University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Stephanie Frank
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Małgorzata Anna Majcher
- Faculty
of Food Science and Nutrition, Poznań
University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
2
|
Fratianni F, Amato G, Ombra MN, De Feo V, Nazzaro F, De Giulio B. Chemical Characterization and Biological Properties of Leguminous Honey. Antioxidants (Basel) 2024; 13:482. [PMID: 38671929 PMCID: PMC11047671 DOI: 10.3390/antiox13040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Honey can beneficially act against different human diseases, helping our body to improve its health. The aim of the present study was first to increase knowledge of some biochemical characteristics (amount and composition of polyphenols and volatile organic compounds, vitamin C content) of five Italian legume honeys (alfalfa, astragalus, carob, indigo, and sainfoin). Furthermore, we evaluated their potential health properties by studying their antioxidant and in vitro anti-inflammatory activities and in vitro inhibitory effects on three enzymes involved in neurodegenerative diseases (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Alfalfa honey showed the highest total polyphenol content (TPC) (408 μg g-1 of product). Indigo honey showed the lowest TPC (110 μg g-1 of product). The antioxidant activity was noteworthy, especially in the case of sainfoin honey (IC50 = 6.08 mg), which also exhibited excellent inhibitory action against butyrylcholinesterase (74%). Finally, the correlation between the biochemical and functional results allowed us to identify classes of molecules, or even single molecules, present in these five honeys, which are capable of influencing the properties indicated above.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Vincenzo De Feo
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| | - Beatrice De Giulio
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (V.D.F.); (B.D.G.)
| |
Collapse
|
3
|
Castell A, Arroyo-Manzanares N, Guerrero-Núñez Y, Campillo N, Viñas P. Headspace with Gas Chromatography-Mass Spectrometry for the Use of Volatile Organic Compound Profile in Botanical Origin Authentication of Honey. Molecules 2023; 28:molecules28114297. [PMID: 37298771 DOI: 10.3390/molecules28114297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The botanical origin of honey determines its composition and hence properties and product quality. As a highly valued food product worldwide, assurance of the authenticity of honey is required to prevent potential fraud. In this work, the characterisation of Spanish honeys from 11 different botanical origins was carried out by headspace gas chromatography coupled with mass spectrometry (HS-GC-MS). A total of 27 volatile compounds were monitored, including aldehydes, alcohols, ketones, carboxylic acids, esters and monoterpenes. Samples were grouped into five categories of botanical origins: rosemary, orange blossom, albaida, thousand flower and "others" (the remaining origins studied, due to the limitation of samples available). Method validation was performed based on linearity and limits of detection and quantification, allowing the quantification of 21 compounds in the different honeys studied. Furthermore, an orthogonal partial least squares-discriminant analysis (OPLS-DA) chemometric model allowed the classification of honey into the five established categories, achieving a 100% and 91.67% classification and validation success rate, respectively. The application of the proposed methodology was tested by analysing 16 honey samples of unknown floral origin, classifying 4 as orange blossom, 4 as thousand flower and 8 as belonging to other botanical origins.
Collapse
Affiliation(s)
- Ana Castell
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Yolanda Guerrero-Núñez
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Characterization of Turkish Astragalus honeys according to their phenolic profiles and biological activities with a chemometric approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Untargeted metabolomic analysis of honey mixtures: discrimination opportunities based on ATR-FTIR data and machine learning algorithms. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Bonini A, Dellacassa E, Ares G, Daners G, Godoy A, Boido E, Fariña L. Fecal descriptor in honey: indole from a floral source as an explanation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6780-6785. [PMID: 35942662 DOI: 10.1002/jsfa.12166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Animal odor, is one of the most common aroma defects described in the honey odor aroma wheel. It comprises two secondary descriptors: 'fecal' and 'cowshed'. However, the compounds responsible for these honey defects have not been fully identified. In this context, the aim of this work was to identify the compounds responsible for the aromatic defect 'fecal' in Uruguayan honeys by means of gas chromatography coupled to olfactometry (GC-O). RESULTS Samples of honey described by beekeepers as having fecal aroma were analyzed by GC-O and gas chromatography coupled to mass spectrometry (GC-MS). Through GC-O, it was possible to establish the region of the chromatogram corresponding to the fecal descriptor, while the GC-MS analysis allowed to identify indole as the compound responsible for the fecal descriptor. The content of indole in the analyzed samples ranged between 132 and 414 μg kg-1 . The melissopalynological analysis indicated the presence of Scutia buxifolia ('quebracho' or 'coronilla') pollen in all samples studied. The volatile profile of Scutia buxifolia flowers was evaluated during the full day, enabling the identification of indole as one of its components. The detection threshold value for indole in honey was experimentally determined as 64 μg kg-1 of honey, a value lower than the concentration found in the evaluated samples. CONCLUSION Results from the study allowed the identification of indole as the compound responsible for the 'fecal' aroma defect in Scutia buxifolia honeys. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Bonini
- Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gastón Ares
- Área Sensometría y Ciencia del Consumidor, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gloria Daners
- Departamento de Paleontología, Instituto de Ciencias Geológicas, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Godoy
- Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Boido
- Área Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Fariña
- Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Área Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Valverde S, Ares AM, Stephen Elmore J, Bernal J. Recent trends in the analysis of honey constituents. Food Chem 2022; 387:132920. [DOI: 10.1016/j.foodchem.2022.132920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
8
|
Multi-Elemental Analysis as a Tool to Ascertain the Safety and the Origin of Beehive Products: Development, Validation, and Application of an ICP-MS Method on Four Unifloral Honeys Produced in Sardinia, Italy. Molecules 2022; 27:molecules27062009. [PMID: 35335374 PMCID: PMC8950479 DOI: 10.3390/molecules27062009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Despite unifloral honeys from Sardinia, Italy, being appreciated worldwide for their peculiar organoleptic features, their elemental signature has only partly been investigated. Hence, the principal aim of this study was to measure the concentration of trace and toxic elements (i.e., Ag, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, V, and Zn) in four unifloral honeys produced in Sardinia. For this purpose, an original ICP-MS method was developed, fully validated, and applied on unifloral honeys from asphodel, eucalyptus, strawberry tree, and thistle. Particular attention was paid to the method’s development: factorial design was applied for the optimization of the acid microwave digestion, whereas the instrumental parameters were tuned to minimize the polyatomic interferences. Most of the analytes’ concentration ranged between the relevant LoDs and few mg kg−1, while toxic elements were present in negligible amounts. The elemental signatures of asphodel and thistle honeys were measured for the first time, whereas those of eucalyptus and strawberry tree honeys suggested a geographical differentiation if compared with the literature. Chemometric analysis allowed for the botanical discrimination of honeys through their elemental signature, whereas linear discriminant analysis provided an accuracy level of 87.1%.
Collapse
|
9
|
Metabolic profiling of organic acids in honey by stable isotope labeling assisted liquid chromatography-mass spectrometry. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|