1
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
2
|
Xu W, Zhang X, Ni D, Zhang W, Guang C, Mu W. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity. Food Chem 2024; 440:138250. [PMID: 38154282 DOI: 10.1016/j.foodchem.2023.138250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Carbohydrate-active enzymes are accountable for the synthesis and degradation of glycosidic bonds among diverse carbohydrates. Fructosyl-transferases represent a subclass of these enzymes, employing sucrose as a substrate to generate fructooligosaccharides (FOS) and fructan polymers. This category primarily includes levansucrase (LS, EC 2.4.1.10), inulosucrase (IS, EC 2.4.1.9), and β-fructofuranosidase (Ffase, EC 3.2.1.26). These three enzymes possess a similar five-bladed β-propeller fold and employ an anomer-retaining reaction mechanism mediated by nucleophiles, transition state stabilizers, and general acids/bases. However, they exhibit distinct product profiles, characterized by variations in linkage specificity and molecular mass distribution. Consequently, this article comprehensively explores recent advancements in the catalytic characteristics, structural features, reaction mechanisms, and product specificity of levansucrase, inulosucrase, and β-fructofuranosidase (abbreviated as LS, IS, and Ffase, respectively). Furthermore, it discusses the potential for modifying catalytic properties and product specificity through structure-based design, which enables the rational production of custom fructan and FOS.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
4
|
Chen Z, Shen Y, Wang R, Li S, Jia Y. Expression and characterization of a protease-resistant β-d-fructofuranosidase BbFFase9 gene suitable for preparing invert sugars from soybean meal. Heliyon 2023; 9:e19889. [PMID: 37809427 PMCID: PMC10559283 DOI: 10.1016/j.heliyon.2023.e19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
A novel gene (BbFFase9), with an ORF of 1557 bp that encodes β-d-fructofuranosidase from Bifidobacteriaceae bacterium, was cloned and expressed in Escherichia coli. The recombinant protein (BbFFase9) was successfully purified and showed a single band with a molecular mass of 66.2 kDa. This was confirmed as a β-d-fructofuranosidase and exhibited a high specific activity of 209.2 U/mg. Although BbFFase9 was a soluble protein, it exhibited excellent tolerance to proteases such as pepsin, trypsin, acidic protease, neutral protease and Flavourzyme®, indicating its potential applicability in different fields. BbFFase9 exhibited typical invertase activity, and highly catalyzed the hydrolysis of the α1↔2β glycosidic linkage in molecules containing fructosyl moieties but with no detectable fructosyltransferase activity. It was optimally active at pH 6.5 and 50 °C and stable between pH 6.0 and 9.0 at a temperature of up to 45 °C for 30 min BbFFase9 could also effectively hydrolyze galacto-oligosaccharides, which are a flatulence factor in soybean meal, thus releasing new types of product such as melibiose and mannotriose, or degrading them into invert sugars, the sweeter fructose and glucose. This study is the first to report the application of this type of β-d-fructofuranosidase.
Collapse
Affiliation(s)
- Zhou Chen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yimei Shen
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Run Wang
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Siting Li
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingmin Jia
- Lab of Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
5
|
Ni D, Xu W, Zhu Y, Pang X, Lv J, Mu W. Insight into the effects and biotechnological production of kestoses, the smallest fructooligosaccharides. Crit Rev Biotechnol 2020; 41:34-46. [PMID: 33153319 DOI: 10.1080/07388551.2020.1844622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kestoses, the smallest fructooligosaccharides, are trisaccharides composed of a fructose molecule and a sucrose molecule linked by either β-(2,1) or β-(2,6) linkage. 1-kestose, 6-kestose and neokestose are the three types of kestoses occurring in nature. As the main kind of fructooligosaccharide, kestoses share similar physiological effects with other fructooligosaccharides, and they have recently been determined to show more notable effects in promoting the growth of probiotics including Faecalibacterium prausnitzii and Bifidobacterium than those of other fructooligosaccharides. Kestoses exist in many plants, but the relatively low content and the isolation and purification are the main barriers limiting their industrial application. The production of kestoses by enzymatic biosynthesis and microbial fermentation has the potential to facilitate its production and industrial use. In this article, the recent advances in the research of kestoses were overviewed, including those studying their functions and production. Kestose-producing enzymes were introduced in detail, and microbial production and fermentation optimization techniques for enhancing the yield of kestoses were addressed. β-Fructofuranosidase is the main one used to produce kestoses because of the extensive range of microbial sources. Therefore, the production of kestoses by microorganisms containing β-fructofuranosidase has also been reviewed. However, few molecular modification studies have attempted to change the production profile of some enzymes and improve the yield of kestoses, which is a topic that should garner more attention. Additionally, the production of kestoses using food-grade microorganisms may be beneficial to their application in the food industry.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|