1
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
2
|
Urbanowicz T, Hanć A, Frąckowiak J, Białasik-Misiorny M, Olasińska-Wiśniewska A, Krasińska B, Krasińska-Płachta A, Tomczak J, Kowalewski M, Krasiński Z, Tykarski A, Jemielity M. Are Hair Scalp Trace Elements Correlated with Atherosclerosis Location in Coronary Artery Disease? Biol Trace Elem Res 2024:10.1007/s12011-024-04335-w. [PMID: 39145863 DOI: 10.1007/s12011-024-04335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Coronary artery disease is among the leading current epidemiological challenges. The genetic, clinical, and lifestyle-related risk factors are well documented. The reason for specific epicardial artery locations remains unsolved. The coronary artery topography and blood flow characteristics may induce local inflammatory activation. The atherosclerotic plaque formation is believed to represent inflammatory response involving enzymatic processes co-factored by trace elements. The possible relation between trace elements and coronary artery disease location was the subject of the study. There were 175 patients (107 (61) men and 68 (39) females) in a median (Q1-3) age of 71 years (65-76) admitted for coronary angiography due to chronic coronary syndrome. The angiographic results focused on the percentage of lumen stenosis in certain arteries and were compared with the results for hair scalp trace elements. The correlation between left main coronary artery atherosclerotic plaques and nickel (Ni), zinc (Zn), and antimony (Sb) hair scalp concentration was noted. The analysis revealed a positive relation between left descending artery disease and chromium (Cr), sodium (Na), arsenic (As), and molybdenum (Mo) and a negative correlation with strontium (Sr). The atherosclerotic lesion in the circumflex artery revealed correlations in our analysis with sodium (Na), potassium (K), chromium (Cr), nickel (Ni), arsenic (As), and negative with strontium (Sr) (r) hair scalp concentrations. The negative correlations between right coronary artery disease and magnesium (Mg) and strontium (Sr) concentrations were noted. The possible explanation of different epicardial artery involvement and severity by atherosclerotic processes may lay in their topography and blood rheological characteristics that induce different inflammatory reactions co0factored by specific trace elements. The trace element concentration in the hair scalp may correlate with a particular coronary atherosclerotic involvement, including the severity of lumen reduction. This may indicate the missing link between the pathophysiological processes of atherosclerosis development and its location in coronary arteries.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga ½ Street, 61-701, Poznan, Poland.
- Thoracic Research Centre, Innovative Medical Forum, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland.
| | - Julia Frąckowiak
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | | | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga ½ Street, 61-701, Poznan, Poland
| | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | | | - Jolanta Tomczak
- Department of Cardiac Surgery and Transplantology, Ministry of Interior and Administration, National Medical Instituteof the , Warsaw, Poland
| | - Mariusz Kowalewski
- Thoracic Research Centre, Innovative Medical Forum, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Cardiovascular Research Centre Maastricht (CARIM), Maastricht, the Netherlands
- Department of Vascular, Endovascular Surgery, Angiology, and Phlebology Medical University, Poznan University of Medical Science, 61-701, Poznań, Poland
| | - Zbigniew Krasiński
- Department of Cardiac Surgery and Transplantology, Ministry of Interior and Administration, National Medical Instituteof the , Warsaw, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga ½ Street, 61-701, Poznan, Poland
| |
Collapse
|
3
|
Huangfu N, Ma H, Tian M, Zhang J, Wang Y, Li Z, Chen X, Cui H. DHX9 Strengthens Atherosclerosis Progression By Promoting Inflammation in Macrophages. Inflammation 2023; 46:1725-1738. [PMID: 37326773 PMCID: PMC10567826 DOI: 10.1007/s10753-023-01836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Atherosclerosis (AS) is the main cause of cerebrovascular diseases, and macrophages play important roles in atherosclerosis. DExH-Box helicase 9 (DHX9), as a member of DExD/H-box RNA helicase superfamily II, is identified as an autoantigen in the sera of systemic lupus erythematosus patients to trigger inflammation. The aim of this study was to investigate whether DHX9 is involved in AS development, especially in macrophages-mediated-inflammatory responses. We find that DHX9 expression is significantly increased in oxLDL or interferon-γ-treated macrophages and peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease (CAD). Knockdown of DHX9 inhibits lipid uptake and pro-inflammatory factors expression in macrophages, and ameliorates TNF-α-mediated monocyte adhesion capacity. Furthermore, we find that oxLDL stimulation promotes DHX9 interaction with p65 in macrophages, and further enhances the transcriptional activity of DHX9-p65-RNA Polymerase II complex to produce inflammatory factors. Moreover, using ApoE -/- mice fed with western diet to establish AS model, we find that knockdown of DHX9 mediated by adeno-associated virus-Sh-DHX9 through tail vein injection evidently alleviates AS progression in vivo. Finally, we also find that knockdown of DHX9 inhibits p65 activation, inflammatory factors expression, and the transcriptional activity of p65-RNA Polymerase II complex in PBMCs from patients with CAD. Overall, these results indicate that DHX9 promotes AS progression by enhancing inflammation in macrophages, and suggest DHX9 as a potential target for developing therapeutic drug.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Hongchuang Ma
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Mengyun Tian
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Jie Zhang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| | - Hanbin Cui
- Department of Cardiology, Ningbo First Hospital, Ningbo, 315000, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315000, China.
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, 315000, China.
| |
Collapse
|
4
|
Fan X, Zhang L, La X, Tian J, Israr G, Li A, Wu C, An Y, Li S, Dong X, Li Z. Salvianolic acid A attenuates inflammation-mediated atherosclerosis by suppressing GRP78 secretion of endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116219. [PMID: 36758912 DOI: 10.1016/j.jep.2023.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid A (SAA) is the main active component of the classic anti-atherosclerotic drug Salvia miltiorrhiza Bunge. Inflammation-induced infiltration of monocyte/macrophages into the vascular wall is the initiating step in atherogenesis, and targeted blocking of this step may provide a promising avenue for the precise treatment of atherosclerosis. However, the effect of salvianolic acid A on macrophages is still unknown. AIM OF THE STUDY To evaluate the effect of SAA on macrophage infiltration and the underlying mechanism of SAA against atherosclerosis. MATERIALS AND METHODS Vascular endothelial cells were stimulated with lipopolysaccharide (LPS) to simulate the inflammatory environment, and its effect on monocyte/macrophages was evaluated. Mass spectrometry was used to identify the proteins that play a key role and further validated them. LncRNA sequencing, western blot analysis, RNA immunoprecipitation, and RNA pulldown were used to elucidate the mechanism of SAA against atherosclerosis. Finally, ApoE-/- mice were fed a high-fat diet to creat an in vivo atherosclerosis model. Secretory GRP78 content, lipid levels, plaque area, macrophage infiltration, and degree of inflammation were assessed by standard assays after 16 weeks of intragastric administration of SAA or biweekly tail vein injections of GRP78 antibody. RESULTS After LPS stimulation, the increased secretion of GRP78 recruits circulating monocyte/macrophages and drives monocyte/macrophage adhesion and invasion into the vascular intima to promote atherosclerosis progression. Interestingly, SAA exerts anti-atherosclerosis effects by inhibiting the secretion of GRP78. Further mechanistic studies indicated that SAA upregulates the expression of lncRNA NR2F2-AS1, which reverses the abnormal localization of the KDEL receptor (KDELR) caused by inflammation. It promotes the homing of GRP78 from the Golgi apparatus to the endoplasmic reticulum rather than secreting outside the cell. CONCLUSION SAA alleviates atherosclerosis by inhibiting GRP78 secretion via the lncRNA NR2F2-AS1-KDELR axis. The findings not only provide a new direction for the precise therapy of atherosclerosis based on secretory GRP78 but also elucidate the pharmacological mechanism of SAA against atherosclerosis, putting the foundation for further development and clinical application of SAA drugs.
Collapse
Affiliation(s)
- Xiaxia Fan
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Ghani Israr
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Yuxuan An
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Songtao Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Paik SJ, Kim DJ, Jung SK. Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease. Int J Mol Sci 2023; 24:ijms24065953. [PMID: 36983027 PMCID: PMC10056297 DOI: 10.3390/ijms24065953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Assies JM, Sältz MD, Peters F, Behrendt CA, Jagodzinski A, Petersen EL, Schäfer I, Twerenbold R, Blankenberg S, Rimmele DL, Thomalla G, Makarova N, Zyriax BC. Cross-Sectional Association of Dietary Patterns and Supplement Intake with Presence and Gray-Scale Median of Carotid Plaques-A Comparison between Women and Men in the Population-Based Hamburg City Health Study. Nutrients 2023; 15:1468. [PMID: 36986198 PMCID: PMC10054689 DOI: 10.3390/nu15061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
This population-based cross-sectional cohort study investigated the association of the Mediterranean and DASH (Dietary Approach to Stop Hypertension) diet as well as supplement intake with gray-scale median (GSM) and the presence of carotid plaques comparing women and men. Low GSM is associated with plaque vulnerability. Ten thousand participants of the Hamburg City Health Study aged 45-74 underwent carotid ultrasound examination. We analyzed plaque presence in all participants plus GSM in those having plaques (n = 2163). Dietary patterns and supplement intake were assessed via a food frequency questionnaire. Multiple linear and logistic regression models were used to assess associations between dietary patterns, supplement intake and GSM plus plaque presence. Linear regressions showed an association between higher GSM and folate intake only in men (+9.12, 95% CI (1.37, 16.86), p = 0.021). High compared to intermediate adherence to the DASH diet was associated with higher odds for carotid plaques (OR = 1.18, 95% CI (1.02, 1.36), p = 0.027, adjusted). Odds for plaque presence were higher for men, older age, low education, hypertension, hyperlipidemia and smoking. In this study, the intake of most supplements, as well as DASH or Mediterranean diet, was not significantly associated with GSM for women or men. Future research is needed to clarify the influence, especially of the folate intake and DASH diet, on the presence and vulnerability of plaques.
Collapse
Affiliation(s)
- Julia Maria Assies
- Midwifery Science—Health Care Research and Prevention, Research Group Preventive Medicine and Nutrition, Institute for Health Service Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, W26, 20246 Hamburg, Germany; (J.M.A.); (M.D.S.); (B.-C.Z.)
| | - Martje Dorothea Sältz
- Midwifery Science—Health Care Research and Prevention, Research Group Preventive Medicine and Nutrition, Institute for Health Service Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, W26, 20246 Hamburg, Germany; (J.M.A.); (M.D.S.); (B.-C.Z.)
| | | | | | | | - Elina Larissa Petersen
- Population Health Research Department, University Heart and Vascular Center, 20246 Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Ines Schäfer
- Population Health Research Department, University Heart and Vascular Center, 20246 Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
| | - Raphael Twerenbold
- Population Health Research Department, University Heart and Vascular Center, 20246 Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20246 Hamburg, Germany
| | - Stefan Blankenberg
- Population Health Research Department, University Heart and Vascular Center, 20246 Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20246 Hamburg, Germany
| | - David Leander Rimmele
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Nataliya Makarova
- Midwifery Science—Health Care Research and Prevention, Research Group Preventive Medicine and Nutrition, Institute for Health Service Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, W26, 20246 Hamburg, Germany; (J.M.A.); (M.D.S.); (B.-C.Z.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20246 Hamburg, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science—Health Care Research and Prevention, Research Group Preventive Medicine and Nutrition, Institute for Health Service Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistraße 52, W26, 20246 Hamburg, Germany; (J.M.A.); (M.D.S.); (B.-C.Z.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
8
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
9
|
Ghasempour G, Shaikhnia F, Soleimani AA, Rahimi B, Najafi M. Correlations between vitronectin, miR-520, and miR-34 in patients with stenosis of coronary arteries. Mol Biol Rep 2021; 48:7913-7920. [PMID: 34652615 DOI: 10.1007/s11033-021-06821-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In-stent restenosis usually occurs by platelet activation, neointima formation, VSMC migration, and proliferation in the position of the vessel stent. The monocytes have a magnificent role in neointimal hyperplasia since these cells recruit to the site of vessel injury through chemokines and other secretion proteins. This study is focused on the investigation of vitronectin, miR-193, miR-34, and miR-520 expression levels in PBMCs isolated from stenosed patients. METHODS A total of sixty subjects undergoing coronary artery angiography containing patients with stent no restenosis (n = 20), in-stent restenosis (n = 20), and healthy participants (n = 20) participated in the study. The vitronectin, miR-193, miR-34, and miR-520 expression levels were measured by the RT-qPCR technique. Data were analyzed by SPSS software. RESULTS The vitronectin, miR-34, and miR-520 expression levels changed significantly in patients with vessel in-stent restenosis (p = 0.02, p = 0.02, and p = 0.01, respectively). Furthermore, there were inverse correlations between the expression levels of vitronectin gene and miR-34 (r = - 0.44, p = 0.04) as well as miR-520 (r = - 0.5, p=0.01). CONCLUSIONS The molecular events in the vessel stenosis may be affected by targeting vitronectin with miR-520 and miR-34.
Collapse
Affiliation(s)
- Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Shaikhnia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Urmia University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Soleimani
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Borhan Rahimi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Paeonia lactiflora Root Extract and Its Components Reduce Biomarkers of Early Atherosclerosis via Anti-Inflammatory and Antioxidant Effects In Vitro and In Vivo. Antioxidants (Basel) 2021; 10:antiox10101507. [PMID: 34679642 PMCID: PMC8532938 DOI: 10.3390/antiox10101507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although various physiological activities of compounds obtained from Paeonia lactiflora have been reported, the effects of P. lactiflora extract (PLE) on early atherosclerosis remain unclear. Therefore, in this study, we investigated the in vitro and in vivo antiatherosclerosis and in vitro antioxidant effects of PLE and its compounds. PLE suppresses the tumor necrosis factor (TNF)-α-induced capacity of THP-1 cells to adhere to human umbilical vein endothelial cells (HUVECs), vascular cell adhesion molecule (VCAM)-1 expression, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in HUVECs. PLE also suppresses TNF-α-induced nuclear translocation of NF-κB p65 from cytosol as well as the enhanced TNFA and C-C motif chemokine ligand 2 (CCL2) mRNA expression in HUVECs. We identified and quantified the following PLE compounds using high-performance liquid chromatography with diode array detection: methyl gallate, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, benzoic acid, benzoylpaeoniflorin, and paeonol. Among these, methyl gallate had the strongest inhibitory effect on monocyte adherence to TNF-α-induced HUVECs and the VCAM-1 expression. Reverse transcriptase real-time quantitative polymerase chain reaction showed that PLE compounds had a dissimilar inhibition effect on TNF-α-induced mRNA expression levels of CCL2, TNFA, and IL6 in HUVECs. Except for paeonol, the compounds inhibited lipopolysaccharide (LPS)-induced reactive oxygen species production in RAW264.7 cells. In vivo, oral administration of PLE improved TNF-α-induced macrophage infiltration to the vascular endothelium and expression of VCAM-1, as well as IL6 and TNFA gene expression in the main artery of mice. PLE could be useful as a nutraceutical material against early atherosclerosis via the combined effects of its components.
Collapse
|
11
|
Pang Q, Sun Z, Shao C, Cai H, Bao Z, Wang L, Li L, Jing L, Zhang L, Wang Z. CML/RAGE Signal Bridges a Common Pathogenesis Between Atherosclerosis and Non-alcoholic Fatty Liver. Front Med (Lausanne) 2020; 7:583943. [PMID: 33240906 PMCID: PMC7677500 DOI: 10.3389/fmed.2020.583943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a common chronic disease in the world. NAFLD is not only a simple intrahepatic lesion, but also affects the occurrence of a variety of extrahepatic complications. In particular, cardiovascular complications are particularly serious, which is the main cause of death in patients with NAFLD. To study the relationship between NAFLD and AS may be a new way to improve the quality of life in patients with NAFLD. As we all known, inflammatory response plays an important role in the occurrence and development of NAFLD and AS. In this study, we found that the accumulation of Nε-carboxymethyllysine (CML) in the liver leads to hepatic steatosis. CML can induce the expression of interleukin (IL-1β), interleukin (IL-6), tumor necrosis factor (TNF-α), C-reactionprotein (CRP) by binding with advanced glycosylation end-product receptor (RAGE) and accelerate the development of AS. After silencing RAGE expression, the expression of pro-inflammatory cytokines was inhibited and liver and aorta pathological changes were relieved. In conclusion, CML/RAGE signal promotes the progression of non-alcoholic fatty liver disease and atherosclerosis. We hope to provide new ideas for the study of liver vascular dialogue in multi organ communication.
Collapse
Affiliation(s)
- Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Honghua Cai
- Department of Burn Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Bao
- Department of Internal Medicine, Affiliated Hospital of Wuxi Maternity and Child Health of Nanjing Medical University, Wuxi, China
| | - Lin Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Burn Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Internal Medicine, Affiliated Hospital of Wuxi Maternity and Child Health of Nanjing Medical University, Wuxi, China.,Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|