1
|
Valitutti F, Mennini M, Monacelli G, Fagiolari G, Piccirillo M, Di Nardo G, Di Cara G. Intestinal permeability, food antigens and the microbiome: a multifaceted perspective. FRONTIERS IN ALLERGY 2025; 5:1505834. [PMID: 39850945 PMCID: PMC11754301 DOI: 10.3389/falgy.2024.1505834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases. Several gaps of knowledge still exist as regards this multi-level interaction. In this review we aim to summarize current evidence linking food antigens, microbiota and gut permeability interference in diverse disease conditions such as celiac disease (CeD), non-celiac wheat sensitivity (NCWS), food allergies (FA), eosinophilic gastrointestinal disorder (EOGID) and irritable bowel syndrome (IBS). Specific food elimination diets are recommended for CeD, NCWS, FA and in some cases for EOGID. Undoubtfully, each of these conditions is very different and quite unique, albeit food antigens/compounds, intestinal permeability and specific microbiota signatures orchestrate immune response and decide clinical outcomes for all of them.
Collapse
Affiliation(s)
- Francesco Valitutti
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Maurizio Mennini
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Gianluca Monacelli
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Giulia Fagiolari
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| | - Marisa Piccirillo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Pediatric Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Wang Z, Gu Y, Wang H, Chen Y, Chen H, Wang X, Yuan W. FOXG1 interaction with SATB2 promotes autophagy to alleviate neuroinflammation and mechanical abnormal pain in rats with lumbar disc herniation. Ann Med 2024; 56:2399967. [PMID: 39624968 PMCID: PMC11616759 DOI: 10.1080/07853890.2024.2399967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Most patients with lumbar disc herniation can be relieved or cured by surgical or non-surgical treatment; however, postoperative persistent radiculopathy is common. This study demonstrates the regulation of autophagy by the FOXG1/SATB2 axis in lumbar disc herniation (LDH). METHODS Rat dorsal root neurons were induced with TNF-α in vitro. Sprague Dawley (SD) rats were used to construct the LDH rat model, which was treated with L. paracasei S16 or oe-FOXG1. Paw withdrawal threshold or latency assay (PWT/L) was performed. Peripheral blood samples were collected and analysed using ELISA and miRNAseq. RT-qPCR was used to analyse the expression of FOXG1, LC3B, Beclin1, p62, and SATB2. TUNEL staining and flow cytometry were used to analyse apoptosis. The expression of Cyclin D1, PCNA, Ki67, FOXG1, SATB2, and autophagy proteins was measured using western blotting. RESULTS TNF-α induced low expression of FOXG1 and SATB2 in dorsal root ganglion (DRG) neurons of rats. TNF-α induced an increase in p62 protein and a decrease in LC3II/I and Beclin-1 proteins in neurons, which were blocked by oe-FOXG1. oe-FOXG1 suppressed inflammation and apoptosis in TNF-α-induced DRG neurons and LDH rats and promoted the expression of Cyclin D1, PCNA, and Ki67. Many miRNAs were increased in the peripheral blood of LDH rats, but decreased after L. paracasei S16 intervention. L. paracasei S16 affects miR-31a-5p and SATB2 expression. Dual luciferase reporter gene assay confirmed that miR-31a-5p bound to SATB2. Co-IP analysis confirmed the interaction between FOXG1 and SATB2. Silencing of SATB2 inhibited the beneficial effects of oe-FOXG1 in TNF-α-induced dorsal root ganglion neurons. Animal experiments further demonstrated that oe-FOXG1 improved LDH disease characteristics by downregulating PWT, PWL, inflammation, and apoptosis levels and upregulating SATB2-autophagy levels. CONCLUSIONS MiR-31a-5p/SATB2 is involved in the treatment of L. paracasei S16 in LDH rats. Overexpression of FOXG1 promotes autophagy through SATB2 to improve LDH levels This provides a new approach for the treatment of LDH.
Collapse
Affiliation(s)
- Zhanchao Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifei Gu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huajiang Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Di Costanzo M, Vella A, Infantino C, Morini R, Bruni S, Esposito S, Biasucci G. Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients 2024; 16:297. [PMID: 38257190 PMCID: PMC10819136 DOI: 10.3390/nu16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Food allergy represents a failure of oral tolerance mechanisms to dietary antigens. Over the past few years, food allergies have become a growing public health problem worldwide. Gut microbiota is believed to have a significant impact on oral tolerance to food antigens and in initiation and maintenance of food allergies. Therefore, probiotics have also been proposed in this field as a possible strategy for modulating both the gut microbiota and the immune system. In recent years, results from preclinical and clinical studies suggest a promising role for probiotics in food allergy prevention and treatment. However, future studies are needed to better understand the mechanisms of action of probiotics in food allergies and to design comparable study protocols using specific probiotic strains, defined doses and exposure times, and longer follow-up periods.
Collapse
Affiliation(s)
- Margherita Di Costanzo
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Adriana Vella
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Claudia Infantino
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Riccardo Morini
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Simone Bruni
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
4
|
Eicher SD, Kritchevsky JE, Bryan KA, Chitko-McKown CG. The Effect of Probiotics in a Milk Replacer on Leukocyte Differential Counts, Phenotype, and Function in Neonatal Dairy Calves. Microorganisms 2023; 11:2620. [PMID: 38004631 PMCID: PMC10673549 DOI: 10.3390/microorganisms11112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Probiotics have been investigated for many health benefits; however, few studies have been performed to determine the effects of oral probiotics on peripheral blood and respiratory immune cells in cattle. Our objectives were to determine changes in health and growth status, differential blood cell counts and function, and blood and lung cell function using flow cytometry and PCR in dairy calves fed a milk replacer with (PRO, N = 10) or without (CON, N = 10) the addition of probiotics to the milk replacer and dry rations from birth to weaning. Performance and clinical scores were not different between the treatment groups. Treatment-by-day interactions for peripheral blood leukocyte populations differed in cell number and percentages. A greater percentage of leukocytes expressed the cell surface markers CD3, CD4, CD8, CD11b, and CD205 on d 21 in CON animals. Lung lavages were performed on five animals from each treatment group on d 52. There were no differences between treatment groups for the expression of cytokines and Toll-Like Receptors as measured using Polymerase Chain Reaction, possibly due to the small sample size. Oral probiotics appear to affect peripheral blood immune cells and function. Their effect on overall calf health remains to be determined.
Collapse
Affiliation(s)
- Susan D. Eicher
- United States Department of Agriculture-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| | - Janice E. Kritchevsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Carol G. Chitko-McKown
- United States Department of Agriculture-Agricultural Research Service, Roman L. Hruska Meat Animal Research Center, Clay Center, NE 68933, USA
| |
Collapse
|
5
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
6
|
Hassanein EHM, Ali FEM, Sayed MM, Mahmoud AR, Jaber FA, Kotob MH, Abd-Elhamid TH. Umbelliferone potentiates intestinal protective effect of Lactobacillus Acidophilus against methotrexate-induced intestinal injury: Biochemical and histological study. Tissue Cell 2023; 82:102103. [PMID: 37178526 DOI: 10.1016/j.tice.2023.102103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Intestinal injury is a common adverse effect of methotrexate (MTX) therapy, limiting its clinical use. Despite oxidative stress and inflammation being the most embedded mechanism of injury, pharmacological agents that exhibit antioxidant and anti-inflammatory impacts could prevent such toxicities. This study aimed to assess the enteroprotective effect of lactobacillus acidophilus (LB) and/or umbelliferone (UMB) against MTX-induced intestinal injury. Histologically, pretreatment with LB, UMB, or their combinations preserve the intestinal histological structure and mucin content with superior effect in combination therapy. In addition, oral pretreatment with UMB, LB, or their combinations significantly restored oxidant/antioxidant status, as evidenced by the upregulation of Nrf2, SOD3, HO-1, GSH, and GST levels concurrent with a decline in MDA contents. Besides, they suppressed the inflammatory burden by inhibiting STAT3, MPO, TLR4, NF-κB, TNF-α, and IL-6 levels. Moreover, LB, UMB, or their combinations significantly upregulated Wnt and β-catenin expression. Notably, pretreatment with the combination therapy is superior to monotherapy in protecting rats' small intestines from MTX-induced enteritis. In conclusion, combined pretreatment with LB and UMB could be a novel therapeutic regimen for conditions of intestinal injury induced by MTX via restoring oxidant/antioxidant balance and suppressing inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mohamed H Kotob
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| |
Collapse
|
7
|
Effects of Lactobacillus on the Differentiation of Intestinal Mucosa Immune Cells and the Composition of Gut Microbiota in Soybean-Sensitized Mice. Foods 2023; 12:foods12030627. [PMID: 36766155 PMCID: PMC9914075 DOI: 10.3390/foods12030627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the early stage of this study, three strains of Lactobacillus with anti-soybean allergy potential were screened: Lactobacillus acidophilus CICC 6081, Lactobacillus delbrueckii subsp. Bulgaricus CICC 6103 and Lactobacillus plantarum subsp. Plantarum CICC 20988. The aim of this study was to analyze the desensitization effect of three strains of Lactobacillus administered by gavage to soybean-allergic mice through the differentiation of immune cells in intestinal lymph nodes and the changes to gut microbiota. The results showed that the three strains of Lactobacillus could stimulate the proliferation of dendritic cells (DCs) and regulate the balance of Th1/Th2 differentiation in the MLNs and PPs of soybean-allergic mice. Furthermore, the Th17/Tregs cell-differentiation ratio in the MLNs of the Lactobacillus-treated mice was significantly lower than that of the allergic mice (p < 0.05). Compared to the control group, the Shannon, Sobs and Ace indexes of intestinal microbiota in the allergic mice were significantly increased (p < 0.05), and the proportion of Clostridiales was significantly higher (p < 0.05), which was reversed by Lactobacillus gavage. In conclusion, the three strains of Lactobacillus can inhibit the intestinal mucosal immune response and regulate gut microbiota balance in soybean-allergic mice.
Collapse
|
8
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Liu P, Hu T, Kang C, Liu J, Zhang J, Ran H, Zeng X, Qiu S. Research Advances in the Treatment of Allergic Rhinitis by Probiotics. J Asthma Allergy 2022; 15:1413-1428. [PMID: 36238950 PMCID: PMC9552798 DOI: 10.2147/jaa.s382978] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Allergic rhinitis (AR) impairs the quality of life of patients and reduces the efficiency of social work, it is an increasingly serious public medical and economic problem in the world. Conventional anti-allergic drugs for the treatment of allergic rhinitis (AR) can cause certain side effects, which limit the quality of life of patients. Therefore, it makes sense to look for other forms of treatment. Several studies in recent years have shown that probiotics have shown anti-allergic effects in various mouse and human studies. For example, the application of certain probiotic strains can effectively relieve the typical nasal and ocular symptoms of allergic rhinitis in children and adults, thereby improving the quality of life and work efficiency. At the same time, previous studies in humans and mice have found that probiotics can produce multiple effects, such as reduction of Th2 cell inflammatory factors and/or increase of Th1 cell inflammatory factors, changes in allergy-related immunoglobulins and cell migration, regulate Th1/Th2 balance or restore intestinal microbiota disturbance. For patients with limited activity or allergic rhinitis with more attacks and longer attack duration, oral probiotics have positive effects. The efficacy of probiotics in the prevention and treatment of allergic rhinitis is remarkable, but its specific mechanism needs further study. This review summarizes the research progress of probiotics in the treatment of allergic rhinitis in recent years.
Collapse
Affiliation(s)
- Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Tianyong Hu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Shuqi Qiu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| |
Collapse
|
10
|
Luo Z, Liu C, Hu Y, Xia T, Zhang B, Chen F, Tan X, Zheng Z. Gegen Qinlian decoction restores the intestinal barrier in bacterial diarrhea piglets by promoting Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB pathway. Biomed Pharmacother 2022; 155:113719. [PMID: 36152417 DOI: 10.1016/j.biopha.2022.113719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Acute bacterial diarrhea is a severe global problem with a particularly high incidence rate in children. The microecology inhabiting the intestinal mucosa is the key factor leading to diarrhea. Gegen Qinlian decoction (GQD) is used to treat bacterial diarrhea, however, its underlying mechanism remains unclear. Thus, this study aimed to clarify the restorative effect of GQD on the intestinal barrier from the perspective of gut microbiota. A Tibetan piglet model with bacterial diarrhea was established through orally administered Escherichia coli, and diarrheal piglets were treated with GQD for three days. After treatment, GQD significantly ameliorated the diarrheal symptoms. GQD decreased the levels of IL-6, LPS, and DAO, and increased SIgA, ZO-1, and occludin levels in intestinal mucosa, indicating the restoration of intestinal barrier. GQD modulated the microbial compositions inhabited on the intestinal mucosa, especially an increase of the Lactobacillus. Spearman analysis showed that Lactobacillus was the key genus of intestinal barrier-related bacteria. Bacterial culture in vitro validated that GQD directly promoted Lactobacillus growth and inhibited E. coli proliferation. Moreover, the expressions of TLR2, MyD88, and NF-κB in the colon decreased after GQD treatment. In conclusion, GQD may treat diarrhea and restore the intestinal mucosal barrier by facilitating Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Yannan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Baoping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Feilong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| | - Zezhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou 510642, PR China.
| |
Collapse
|