1
|
Wang Y, Wei W, Wang Y, Yu L, Xing Z, Zhang J, Meng Z, Wang X. Innovative applications of medium- and long-chain triacylglycerol in nutritional support: Current perspectives and future directions. Compr Rev Food Sci Food Saf 2025; 24:e70116. [PMID: 39891410 DOI: 10.1111/1541-4337.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
As a unique structured lipid, medium- and long-chain triacylglycerol (MLCT) is characterized by the combination of medium- and long-chain fatty acids in a single triacylglycerol molecule. In recent years, MLCT, as a nutritional lipid, has gradually emerged as a research hot topic in the fields of food science and nutrition. This paper innovatively provides a comprehensive review of the current application status and development prospects of MLCT in nutritional support. First, the basic principles defining characteristics and selection basis of both enteral and parenteral nutrition are analyzed, elucidating the differences between the two modalities in terms of nutrient delivery pathway, absorption mechanisms, and physiological effects. Subsequently, the natural sources and artificial synthetic pathways of MLCT along with its metabolic behavior in vivo are elaborated. On this basis, the latest research advancements in the application of MLCT in both nutritional models are reviewed, with a particular emphasis on current research hotspots. Finally, the challenges encountered in the practical application of MLCT are discussed, and the future trajectory of MLCT as a functional lipid is predicted. In particular, the innovative potential of MLCT in functional foods, food for special medical purposes, personalized nutrition, and other aspects is emphasized, which provides beneficial ideas and directions for further research and industrial applications of MLCT.
Collapse
Affiliation(s)
- Yandan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Life Sciences, Anhui Normal University, Wuhu, China
- Jiahe Foods Industry Co., Ltd, Suzhou, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjin Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Le Yu
- Jiahe Foods Industry Co., Ltd, Suzhou, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhiqiang Xing
- Jiahe Foods Industry Co., Ltd, Suzhou, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | | | - Zong Meng
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Wang N, Wang W, Su Y, Zhang J, Sun B, Ai N. The current research status of immobilized lipase performance and its potential for application in food are developing toward green and healthy direction: A review. J Food Sci 2025; 90:e70038. [PMID: 39961802 DOI: 10.1111/1750-3841.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 05/09/2025]
Abstract
Immobilized lipases have received great attention in food, environment, medicine, and other fields due to their easy separation, high stability (temperature, pH), and high storage properties. After immobilization, lipase transforms from a homogeneous to a heterogeneous state, making it easier to recover from the reaction substrate and achieve recycling, which is in line with the concept of green chemistry and reduces protein contamination in the product. There are various materials for enzyme immobilization, including polysaccharides from natural sources, inorganic compounds, carbon nanotubes, metal-organic framework materials, and so forth. Magnetic immobilization carriers have been widely studied due to their ability to achieve separation by adding a magnetic field. Its immobilization method can be simply divided into two categories: physical action (adsorption, embedding) and chemical binding (covalent, cross-linking). Some studies mainly discuss the immobilization support materials, immobilization methods, and applications of immobilized lipases in food. On this basis, our review also focuses on the changes in crosslinking agents for immobilized lipases, different methods to promote immobilization, new trends in the study of immobilized lipases, and proposes prospects for immobilized lipase research in the food industry.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Yufeng Su
- Inner Mongolia Yili Industrial Group Co., Hohhot, China
| | - Jinglin Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| |
Collapse
|
3
|
Zieniuk B, Stępniewski TM, Fabiszewska A. Do they make a good match? Molecular dynamics studies on CALB-catalyzed esterification of 3-phenylpropionic and cinnamic acids. Arch Biochem Biophys 2023; 750:109807. [PMID: 37923242 DOI: 10.1016/j.abb.2023.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Lipases are versatile catalysts widely used in industrial biotransformations and laboratory-scale developed reactions with industrial potential. Despite the fact that lipase B from Candida antarctica (CALB) is one of the most widely used lipolytic enzymes, its substrate specificity is still poorly understood. One observed trend is that reactions carried out with carboxylic acids containing a double bond are less efficient on average. Here, we have utilized a combination of in vitro and in silico techniques, to better understand the negative impact of a double bond on CALB-mediated esterification. Then through extensive molecular dynamics (MD) simulations, we were able to map the entry pathway of cinnamic acid and its derivative into the CALB active site, and their interactions with catalytic residues. We observed a 2 step binding mechanism of studied compounds, where they first penetrate the enzyme pocket in a conformation where their carboxylic groups are extended towards the solvent. This is followed by further penetration of the acid into the enzymatic active pocket, and a full rotation within the active site, which orients the acid in a conformation that allows further steps of the esterification reaction. As acids containing a double bond are more rigid, their mobility and thus ability to rotate in the narrow CALB active site is hampered, which provides a structural explanation for the decreased efficiency of such acids. Our data provide insight into the substrate specificity of CALB-mediated esterification, providing important structural guidelines to better understand and potentially improve the efficiency of such reactions.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-776, Warsaw, Poland.
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), 08003, Barcelona, Spain; InterAx Biotech AG, PARK InnovAARE, 5234, Villigen, Switzerland.
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska Street, 02-776, Warsaw, Poland.
| |
Collapse
|
4
|
Yu C, Peng B, Luo T, Deng Z. Bound lipase: an important form of lipase in rice bran (Oryza sativa). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Guo S, Zhao Q, Li Y, Chu S, He F, Li X, Sun N, Zong W, Liu R. Potential toxicity of bisphenol A to α-chymotrypsin and the corresponding mechanisms of their binding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121910. [PMID: 36167003 DOI: 10.1016/j.saa.2022.121910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor widely existing in plastics and resins, which can accumulate in animals and human bodies, posing a potential threat to the physiological and biochemical reactions of human beings or other organisms. α-Chymotrypsin is a kind of proteolytic enzyme existing in humans and animals, which can cause diseases when its activity is excessive. However, there is a lack of research on the mechanism of endocrine disruptors affecting α-chymotrypsin activity. In this study, the interaction between BPA and α-chymotrypsin was proved via multiple spectroscopic approaches, enzyme activity change, isothermal titration calorimetry and molecular docking. Results showed that α-chymotrypsin's polypeptide chains were unfolded, and protein skeletons were loosened with the exposure to BPA. α-Helix content increased and β-sheet content was decreased. The particle size of the BPA-α-chymotrypsin complex became smaller. Fluorescence sensitization may also be explained by a perturbation of the chromophore Trp 141. The thermodynamic parameters of the binding reaction were measured by isothermal titration calorimetry (ITC), which showed that there was hydrophobic interaction between BPA and α-chymotrypsin, which was consistent with the results of molecular docking. Moreover, BPA may stop near the active center of α-chymotrypsin and interact with the key residues His 57 and Ser 195. The above phenomenon explained the result that the activity of α-chymotrypsin increased to 139% when exposed to high dose BPA (40 μM). Taken together, the effects of BPA on the structure and function of α-chymotrypsin were clarified at the molecular level, which made up the gap in the mechanism of BPA on the proteolytic enzyme, and provided a reliable basis for disease avoidance and prevention.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Zhao
- Shandong Provincial Eco-environment Monitoring Center, 3377 Jingshi Dong Lu, Jinan, Shandong 250100, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|