1
|
El-Houseiny W, Arisha AH, Behairy A, Metwally MMM, Abdel-Warith AWA, Younis EM, Davies SJ, Hassan BA, Abd-Elhakim YM. The immunosuppressive, growth-hindering, hepatotoxic, and oxidative stress and immune related-gene expressions-altering effects of gibberellic acid in Oreochromis niloticus: A mitigation trial using alpha-lipoic acid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105725. [PMID: 38225080 DOI: 10.1016/j.pestbp.2023.105725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1β in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, King Salman international University, Ras sidr, Egypt.; Department of pathology, Faculty of Veterinary Medicine, Zagazig university, Zagazig 44519, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Yu N, Wu Z, Wang Y, Zongo AWS, Nie X, Lu Y, Ye Q, Meng X. Formation of adducts during digestion triggered dietary protein for alleviating cytotoxicity of 2-tert-butyl-1,4-benzoquinone. Food Chem Toxicol 2024; 183:114200. [PMID: 38029872 DOI: 10.1016/j.fct.2023.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 μM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zeyi Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yijue Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
3
|
El-Houseiny W, Arisha AH, Metwally MMM, Abdel-Warith AWA, Younis EM, Davies SJ, Hassan BA, Abd-Elhakim YM. Alpha-lipoic acid suppresses gibberellic acid nephrotoxicity in Nile tilapia (Oreochromis niloticus) via modulating oxidative stress, inflammation, cytokine production, and apoptosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105598. [PMID: 37945227 DOI: 10.1016/j.pestbp.2023.105598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Globally, gibberellic acid (GA) is one of the extensively used plant growth regulators in agriculture. Yet, there is limited information about their toxicity to fish. Recently, alpha lipoic acid (ALA) has drawn much interest due to its antioxidant properties. This study was planned to determine whether ALA might protect Nile tilapia's kidneys from the toxic effects of GA and the probable underlying mechanisms. Thus, 240 Oreochromis niloticus fish (average initial weight 30.67 ± 0.57) were allocated into four groups received a basal diet or a basal diet supplemented with 600 mg/kg ALA or a basal diet but exposed to a GA (150 mg/L), or ALA-fortified diet and concurrently exposed to GA as previously described. After 60 days, hematological, oxidative stress, lipid peroxidation, stress indices, selected kidney toxic byproducts, histological investigations, and associated gene expression were assessed. Anemia, leukopenia, hypoproteinemia, and elevated kidney function indicators were noticed in the GA-treated group. Additionally, there were detectable cortisol, glucose, 8-OHdG, and MDA increases. However, there was a considerable drop in Cat, Sod, Gpx, GSH, and AChE levels. Structural damage to the kidneys was also identified. In the kidney of fish treated with GA, pro-inflammatory cytokines (tnfα, il-1β), stress, and apoptotic genes (hsp70, pcna, caspase-3, and p53) genes were markedly up-regulated, while anti-oxidative (cat, sod) gene expression was downregulated. Conversely, adding ALA to the diet abolished the GA-induced changes in most of the markers mentioned above. Conclusively, ALA protects against GA-induced hematotoxicity, oxidative damage, and nephrotoxic effects in Nile tilapia fish.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | | | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 4511, Egypt.
| |
Collapse
|
4
|
Khadrawy SM, Mohamed DS, Hassan RM, Abdelgawad MA, Ghoneim MM, Alshehri S, Shaban NS. Royal Jelly and Chlorella vulgaris Mitigate Gibberellic Acid-Induced Cytogenotoxicity and Hepatotoxicity in Rats via Modulation of the PPARα/AP-1 Signaling Pathway and Suppression of Oxidative Stress and Inflammation. Foods 2023; 12:foods12061223. [PMID: 36981150 PMCID: PMC10048508 DOI: 10.3390/foods12061223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the genotoxicity and hepatic injury induced by GA3 in rats. Daily oral administration of 55 mg/kg GA3 to rats for 6 constitutive weeks induced biochemical and histopathological changes in the liver via oxidative stress and inflammation. Co-administration of 300 mg/kg RJ or 500 mg/kg CV with GA3 considerably ameliorated the serum levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γGT (gamma-glutamyl transferase), total bilirubin, and albumin. Lowered malondialdehyde, tumor necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) levels along with elevated SOD (superoxide dismutase), CAT (catalase), and GPx (glutathione peroxidase) enzyme activities indicated the antioxidant and anti-inflammatory properties of both RJ and CV. Also, they improved the histological structure and reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions along with up-regulating peroxisome proliferator activated receptor α (PPARα) and down-regulating activator protein 1 (AP-1) gene expression. Additionally, chromosomal abnormalities and mitotic index were nearly normalized after treatment with RJ and CV. In conclusion, RJ and CV can protect against GA3-induced genotoxicity and liver toxicity by diminishing oxidative stress and inflammation, and modulating the PPARα/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Sally M. Khadrawy
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (S.M.K.); (M.A.A.)
| | - Doaa Sh. Mohamed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Randa M. Hassan
- Cytology and Histology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (S.M.K.); (M.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nema S. Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
5
|
Sayed AEDH, Hamed M, El-Sayed AAA, Nunes B, Soliman HAM. The mitigating effect of Spirulina (Arthrospira platensis) on the hemotoxicity of gibberellic acid on juvenile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25701-25711. [PMID: 36346524 PMCID: PMC9995583 DOI: 10.1007/s11356-022-23844-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The use of plant growth regulators has led to environmental contamination of water bodies that occur adjacent to agricultural areas. Some of these chemicals are bioactive, not only to plants, but also to non-target exposed biota, namely of the aquatic compartment. Previous work demonstrated the establishment of hepato- and nephrotoxic effects in juvenile tilapia (Oreochromis niloticus) exposed via aquatic media to gibberellic acid (GA3), which is among the most used plant growth regulators, in agricultural practices. Here, we investigated the effect of GA3 on hematological indices, poikilocytosis, nuclear abnormalities, and genotoxic indices measured in Nile tilapia (Oreochromis niloticus), as well as the putative protective effects of dietary supplementation of Spirulina (Arthrospira platensis). Fish were evenly assorted into 5 groups: group I served as a control, and groups II-V were fed diets supplemented with Spirulina at rates of 0 g/kg, 5 g/kg, 20 g/kg, and 100 g/kg, respectively, for 2 months before being exposed to 150 mg/L GA3. The results revealed that GA3 exposure decreased significantly all hematological indices (P < 0.05), except leucocytes and mean corpuscular hemoglobin concentration (MCHC), compared to the control group (P > 0.05). GA3 exposure increased significantly the percentage of nuclear abnormalities, altered erythrocytes and the percentages of tail DNA, compared to the control group (P < 0.05). Spirulina supplementation restored the hematological, poikilocytosis, nuclear abnormalities, and the percentages of tail DNA to near normal levels. The 100 g/kg SP treatment was the most effective in attaining such effect, showing concentration-dependency. The present study reinforces our findings of the toxicity of GA3 on O. niloticus and suggests that the addition of Spirulina to fish diet can mitigate the hemotoxic effects of GA3.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed Hamed
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Abdelaziz A A El-Sayed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Zoology Department, Faculty of Science, Islamic University of Madinah, Medina, 42238, Saudi Arabia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
6
|
Soliman MM, Aldhahrani A, Ghamry HI, Albogami S, Youssef GBA, Kesba H, Shukry M. Chrysin abrogates gibberellic acid-induced testicular oxidative stress and dysfunction via the regulation of antioxidants and steroidogenesis- and apoptosis-associated genes. J Food Biochem 2022; 46:e14165. [PMID: 35383962 DOI: 10.1111/jfbc.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022]
Abstract
GA3 is widely used as a growth stimulant in agricultural regions. The long-term use of GA3 can cause organs damage. Chrysin is a flavonoid found in nature that is commonly used to treat organ toxicity. In this study, we examined the effect of chrysin on the testes function of GA3-affected rats. A total of 24 male Wistar rats were divided into 4 groups. Saline was given to the control group. The chrysin group was given orally 50 mg/kg/BW of chrysin in saline. The GA3 group received a daily oral gavage of GA3 (55 mg/kg/BW). The protective group (chrysin + GA3) was given chrysin and GA3 as those described in chrysin and GA3 groups. There were an increase in MDA levels in the serum and testicular tissue of GA3-treated group. Catalase, GSH, and SOD levels were all lowered in the GA3-treated rats. Chrysin dramatically reduced the harmful effects of GA3 by restoring reproductive hormone levels, altered sperm parameters, and antioxidant capabilities. Furthermore, GA3 reduced the quantitative expression of steroidogenesis genes StAR and 3-HSD, as well as Bcl2 genes, while it increased the apoptotic marker BAX; all were alleviated by the pre-administration of chrysin. The pre-administration of chrysin protected the GA3 group from spermatogenic vacuolation, interstitial edema, necrosis, and depletion. Chrysin inhibited oxidative stress and modulated antioxidant activity, as well as apoptosis-/anti-apoptosis-related mediators in the testes. Chrysin has the potential to repair GA3-induced testicular dysfunctions. This suggests that chrysin is preferable as a medication to mitigate GA3-induced oxidative damage in the testes. PRACTICAL APPLICATIONS: Chrysin has the potential to repair GA3-induced testicular dysfunctions. This suggests that chrysin is preferable as a medication to mitigate GA3-induced oxidative damage in the testes.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hosny Kesba
- Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
7
|
Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Elbadawy M, Shukry M. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res (Camb) 2022; 11:235-244. [PMID: 35237428 PMCID: PMC8882807 DOI: 10.1093/toxres/tfac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gibberellic acid (GA3), a widely known plant growth regulator, has been mostly used in agriculture. Little is known regarding its toxicity or the impact of its metabolic mechanism on human health. The current study examined the protective impact of chrysin against GA3-induced liver and kidney dysfunctions at biochemical, molecular, and histopathological levels. Forty male albino rats were allocated into 4 groups. The control group received saline; the chrysin group received 50 mg/kg/BW orally daily for 4 weeks; the GA3 group received 55 mg/kg/BW GA3 via daily oral gavage for 4 weeks, and the protective group (chrysin + GA3) was administered both chrysin and GA3 at the same dosage given in chrysin and GA3 groups. Chrysin was administered 1 h earlier than GA3. The GA3 induced liver and kidney injuries as proven by the elevation of hepatic and renal markers with a significant increase in malondialdehyde levels. Furthermore, a decrease of catalase and glutathione was reported in the GA3-administered rats. Pre-administration of chrysin significantly protected the hepatorenal tissue against the deleterious effects of GA3. Chrysin restored the hepatorenal functions and their antioxidant ability to normal levels. Moreover, chrysin modulated the hepatorenal toxic effects of GA3 at the molecular level via the upregulation of the antiapoptotic genes, interleukin-10 (IL-10), hemoxygenase-1, and nuclear factor erythroid 2-related factor 2 expressions; the downregulation of the kidney injury molecule-1 and caspase-3 mRNA expressions; and a decrease in IL-1β and tumor necrosis factor-α secretions. Additionally, the pre-administration of chrysin effectively attenuated the GA3-induced hepatorenal histopathological changes by regulating the immunoexpression of cytochrome P450 2E1 (CYP2E1) and pregnane X receptor, resulting in normal values at the cellular level. In conclusion, chrysin attenuated GA3-induced oxidative hepatorenal injury by inhibiting free-radical production and cytokine expression as well as by modulating the antioxidant, apoptotic, and antiapoptotic activities. Chrysin is a potent hepatorenal protective agent to antagonize oxidative stress induced by GA3.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995 Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalioubiya 13736, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, P.O.Box 33516, Egypt
| |
Collapse
|