1
|
Tabeshpour J, Asadpour A, Norouz S, Hosseinzadeh H. The protective effects of medicinal plants against cigarette smoking: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156199. [PMID: 39492128 DOI: 10.1016/j.phymed.2024.156199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUNDS Cigarette smoking remains a pervasive and harmful habit, and it poses a significant public health concern globally. Tobacco smoke contains numerous toxicants and carcinogens that contribute to the incidence of various diseases, including respiratory ailments, cancer, and cardiovascular disorders. Over the past decade, there has been a growing interest in exploring natural remedies to mitigate the harmful effects of cigarette smoke (CS). Medicinal plants, with their rich phytochemical compositions, have emerged as potential sources of protective agents against CS-induced damage. OBJECTIVES The current review attempts to comprehensively review and provide a thorough analysis of the protective effects of medicinal plants, including ginseng, Aloe vera, Olea europaea, Zea mays, green tea, etc. against CS-related toxicities. MATERIALS AND METHODS A comprehensive research and compilation of existing literature were conducted. We conducted a literature search using the Web of Science, PubMed, Scopus, and Google Scholar. We selected articles published in English between 1987 and 2025. The search was performed using keywords including cigarette smoking, cigarette smokers, second-hand smokers, natural compounds, plant extracts, naturally derived products, natural resources, phytochemicals, and medicinal plants. RESULTS This review critically investigated recent literature focusing on the effects of medicinal plant extracts, essential oils, and isolated compounds on reducing the adverse consequences of CS exposure. These investigations encompassed several in vivo, in vitro, and clinical trials, clarifying the mechanisms underlying the protective effects of these plants. The notable antioxidant, anti-inflammatory, and detoxifying properties of these botanical interventions were also highlighted. CONCLUSION Collectively, this review emphasizes the potential of medicinal plants in alleviating the harmful effects of CS. The rich active constituents present in these plants offer various mechanisms that counteract oxidative stress, inflammation, and carcinogenesis induced by CS exposure. Further research is warranted to reveal the precise molecular mechanisms, derive dosing recommendations, and explore the efficacy of botanical interventions in large-scale clinical trials, ultimately improving public health outcomes and providing valuable insights for the smoking population worldwide.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amirali Asadpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sayena Norouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bhagar R, Gill SS, Le-Niculescu H, Yin C, Roseberry K, Mullen J, Schmitz M, Paul E, Cooke J, Tracy C, Tracy Z, Gettelfinger AS, Battles D, Yard M, Sandusky G, Shekhar A, Kurian SM, Bogdan P, Niculescu AB. Next-generation precision medicine for suicidality prevention. Transl Psychiatry 2024; 14:362. [PMID: 39242534 PMCID: PMC11379963 DOI: 10.1038/s41398-024-03071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Suicidality remains a clear and present danger in society in general, and for mental health patients in particular. Lack of widespread use of objective and/or quantitative information has hampered treatment and prevention efforts. Suicidality is a spectrum of severity from vague thoughts that life is not worth living, to ideation, plans, attempts, and completion. Blood biomarkers that track suicidality risk provide a window into the biology of suicidality, as well as could help with assessment and treatment. Previous studies by us were positive. Here we describe new studies we conducted transdiagnostically in psychiatric patients, starting with the whole genome, to expand the identification, prioritization, validation and testing of blood gene expression biomarkers for suicidality, using a multiple independent cohorts design. We found new as well as previously known biomarkers that were predictive of high suicidality states, and of future psychiatric hospitalizations related to them, using cross-sectional and longitudinal approaches. The overall top increased in expression biomarker was SLC6A4, the serotonin transporter. The top decreased biomarker was TINF2, a gene whose mutations result in very short telomeres. The top biological pathways were related to apoptosis. The top upstream regulator was prednisolone. Taken together, our data supports the possibility that biologically, suicidality is an extreme stress-driven form of active aging/death. Consistent with that, the top subtypes of suicidality identified by us just based on clinical measures had high stress and high anxiety. Top therapeutic matches overall were lithium, clozapine and ketamine, with lithium stronger in females and clozapine stronger in males. Drug repurposing bioinformatic analyses identified the potential of renin-angiotensin system modulators and of cyclooxygenase inhibitors. Additionally, we show how patient reports for doctors would look based on blood biomarkers testing, personalized by gender. We also integrated with the blood biomarker testing social determinants and psychological measures (CFI-S, suicidal ideation), showing synergy. Lastly, we compared that to machine learning approaches, to optimize predictive ability and identify key features. We propose that our findings and comprehensive approach can have transformative clinical utility.
Collapse
Affiliation(s)
- R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- MindX Sciences, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Yin
- University of Southern California, Los Angeles, CA, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Mullen
- IT Core, Indiana University, Indianapolis, IN, USA
| | - M Schmitz
- MindX Sciences, Indianapolis, IN, USA
| | - E Paul
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - J Cooke
- VA Medical Center, Indianapolis, IN, USA
| | - C Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - Z Tracy
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- VA Medical Center, Indianapolis, IN, USA
| | - A S Gettelfinger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Battles
- Marion County Coroner's Office, Indianapolis, USA
| | - M Yard
- INBRAIN, Indianapolis, IN, USA
| | | | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - P Bogdan
- University of Southern California, Los Angeles, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- MindX Sciences, Indianapolis, IN, USA.
- VA Medical Center, Indianapolis, IN, USA.
- INBRAIN, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Psychiatry, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Butt MS, Javed K, Tariq U. Co-supplementation of Zinc and Calcium Suppresses Bio-absorption of Lead in Sprague Dawley Rats. Biol Trace Elem Res 2023; 201:1317-1326. [PMID: 35399139 DOI: 10.1007/s12011-022-03233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Lead (Pb) is a widespread environmental toxicant and its toxicity causes huge health impacts. The present study was conducted to examine the protective role of zinc (Zn) and calcium (Ca) supplements against bio-absorption of Pb in blood and organs including the liver and kidney. Hence, Sprague Dawley rats were divided in to five groups. G1 served as negative control and was provided with standard diet, G2 as positive control receiving standard diet + PbAc (20 mg/kg BW), G3 was provided with standard diet + PbAc (20 mg/kg BW) + ZnSO4 (20 mg/kg BW), G4 with standard diet + PbAc (20 mg/kg BW) + CaCO3 (7.5 g/kg BW) whereas G5 was fed on standard diet + PbAc (20 mg/kg BW) + ZnSO4 (20 mg/kg BW) + CaCO3 (7.5 g/kg BW). The salts were provided as solution, dissolved in 0.5 mL distilled water via orogastric tube. After 35 days, the overnight fasted rats were decapitated, and blood and organs were collected for analysis of levels of metals and liver and kidney function tests. The results depicted significant decrease in Pb concentration in blood and organs while increase in Zn and Ca absorption was observed as a result of Zn and Ca supplementation with Zn being better than Ca alone, specially however, combined effect of these supplements was more profound in improving liver and kidney stress biomarkers and maintained the normal architecture of renal and hepatic parenchyma. It was concluded that Zn and Ca co-supplementation hinder Pb absorption in blood, the liver, and kidney thus suggesting that their intake may protect from Pb toxicity.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Komal Javed
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan
| | - Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Tariq U, Butt MS, Pasha I, Faisal MN. Prophylactic role of olive fruit extract against cigarette smoke-induced oxidative stress in Sprague-Dawley rats. Cell Stress Chaperones 2022; 27:545-560. [PMID: 35951259 PMCID: PMC9485526 DOI: 10.1007/s12192-022-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.
Collapse
Affiliation(s)
- Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Imran Pasha
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Bonokwane MB, Lekhooa M, Struwig M, Aremu AO. Antidepressant Effects of South African Plants: An Appraisal of Ethnobotanical Surveys, Ethnopharmacological and Phytochemical Studies. Front Pharmacol 2022; 13:895286. [PMID: 35846999 PMCID: PMC9277359 DOI: 10.3389/fphar.2022.895286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Globally, the search for safe and potent natural-based treatment for depression is receiving renewed interest given the numerous side-effects associated with many existing drugs. In South Africa, the use of plants to manage depression and related symptoms is fairly documented among different ethnic groups. In the current study, we reviewed existing ethnobotanical, ethnopharmacological and phytochemical studies on South African medicinal plants used to manage depression. Electronic databases were accessed for scientific literature that meets the inclusion criteria. Plants with ethnobotanical evidence were subjected to a further pharmacological review to establish the extent (if any) of their effectiveness as antidepressants. Critical assessment resulted in 20 eligible ethnobotanical records, which generated an inventory of 186 plants from 63 plant families. Due to the cultural differences observed in the definition of depression, or lack of definition in some cultures, most plants are reported to treat a wide range of atypical symptoms related to depression. Boophone disticha, Leonotis leonurus and Mentha longifolia were identified as the three most popular plants, with over eight mentions each from the ethnobotanical records. The dominant families were Asteraceae (24), Fabaceae (16), Amaryllidaceae (10), and Apocynaceae (10) which accounted for about 32% of the 186 plants. Only 27 (≈14.5%) of the plants have been screened for antidepressant activity using in vitro and in vivo models. Agapanthus campanulatus, Boophone disticha, Hypericum perforatum, Mondia whitei and Xysmalobium undulatum, represent the most studied plants. Phytochemical investigation on nine out of the 27 plants revealed 24 compounds with antidepressant-like effects. Some of these included buphanidrine and buphanamine which were isolated from the leaves of Boophone disticha, Δ9-tetrahydrocannabinol, cannabidiol and cannabichromene obtained from the buds of Cannabis sativa and carnosic acid, rosmarinic acid and salvigenin from Rosmarinus officinalis, A significant portion (≈85%) of 186 plants with ethnobotanical records still require pharmacological studies to assess their potential antidepressant-like effects. This review remains a valuable reference material that may guide future ethnobotanical surveys to ensure their robustness and validity as well as database to identify promising plants to screen for pharmacology efficacy.
Collapse
Affiliation(s)
- Melia Bokaeng Bonokwane
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| | - Madeleen Struwig
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Makhotso Lekhooa, ; Adeyemi Oladapo Aremu,
| |
Collapse
|