1
|
Shou M, Lin Q, Xu Y, Zhu R, Shi M, Kai G. New insights of advanced biotechnological engineering strategies for tanshinone biosynthesis in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112384. [PMID: 39756484 DOI: 10.1016/j.plantsci.2025.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Salvia miltiorrhiza Bunge, a well-known traditional Chinese herbal medicine, has been served as not only medicine for human ailments, but also health care products. As one of major bioactive ingredients, tanshinones are widely used to treat cardiovascular and cerebrovascular diseases, and also possess different pharmacological activities including anti-tumor, anti-inflammatory, anti-fibrotic and others. However, the content of tanshinones is relatively low in S. miltiorrhiza plants. Recently, multiple biotechnological strategies have been applied to improve tanshinone production. In this review, advances in bioactivities, biosynthesis pathway and regulation, transcriptional regulatory network, epigenetic modification and synthetic biology are summarized, and future perspectives are discussed, which will help develop high-quality S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Minyu Shou
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qinzhe Lin
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Xu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China; College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Shi
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- The Key Laboratory of Traditional Chinese Medicine Resources Innovation and Transformation in Zhejiang Province, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Chen Y, Wang L, Ma D, Cui Z, Liu Y, Pang Q, Jiang Z, Gao Z. Research on rheumatic heart disease from 2013 to early 2024: a bibliometric analysis. J Cardiothorac Surg 2024; 19:659. [PMID: 39702478 DOI: 10.1186/s13019-024-03175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES The aim of this bibliometric analysis was to highlight potential future areas for the practical application of research on rheumatic heart disease (RHD), considering past and current research efforts. METHODS A systematic search was conducted in the WoSCC to find articles and reviews focused on RHD published between 2013 and 2024. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to RHD, while ArcGIS (version 10.8) was employed to visualize the global distribution of publications. Analysis tools such as CiteSpace (version 6.1.R6) and VOSviewer (version 1.6.18) were utilized to identify the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in RHD research, and to perform co-citation analysis of references and keywords. Additionally, the Bibliometrix R Package was used to analyze topic dynamics. RESULTS From the search, a total of 2,428 publications were retrieved. In terms of countries or regions, the United States was the most productive country (566, 23.31%). As for institutions, most publications have been contributed by the University of Cape Town (149, 6.14%). Regarding authors, Jonathan R. Carapetis produced the most published works, and he received the most co-citations. The most prolific journal was identified as the International Journal of Cardiology (70, 2.88%). The study published in Circulation received the most co-citations. Keywords with ongoing strong citation bursts included "surgical treatment" and "valvular heart disease". CONCLUSION Despite the rapid advancements in the field of RHD research, future efforts should prioritize strengthening collaboration among national institutions to facilitate information dissemination. Current research on RHD mainly focuses on prognosis of patients. While, the emerging research trends in RHD encompass treatment strategies for complications, including atrial fibrillation (AF), heart failure (HF), and infective endocarditis, as well as screening strategies for RHD and surgical interventions for patients with rheumatic mitral valve disease.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Liuding Wang
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dan Ma
- Department of Cardiology, Suzhou Branch of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Suzhou, 215009, China
| | - Zhijie Cui
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanjiao Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qinghua Pang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhonghui Jiang
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Zhuye Gao
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
3
|
Zhang J, Han S, Lu S, Li M, Gao Z, Zheng L, Feng Y, Lu F. Electrochemical oxidative site-selective direct C-H activation of tanshinone IIA. Org Biomol Chem 2024; 22:8838-8842. [PMID: 39405110 DOI: 10.1039/d4ob01479k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural products play a pivotal role in the advancement of state-of-the-art pharmaceuticals. To augment their therapeutic efficacy, structural modifications of these compounds are routinely performed. In this study, we introduce an efficient and environmentally benign electrochemical oxidative method for site-selective direct C-H activation of tanshinone IIA under metal-free, oxidant-free, and base-free conditions. Moderate to excellent yields up to 92% of the desired tanshinone IIA derivatives were obtained with a broad substrate scope. Biological activity assays demonstrate that compounds 2k, 2q and 2w possess superior antitumor efficacy compared to tanshinone IIA.
Collapse
Affiliation(s)
- Jingyi Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Shan Han
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Siao Lu
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Minghan Li
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Zixun Gao
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Linyu Zheng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Fangling Lu
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| |
Collapse
|
4
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
5
|
Wu L, Fu W, Cao Y, Zhao S, Zhang Y, Li X, Dong N, Qi W, Malik R, Wang J, Zhao RC. Inhibiting miR-618 Promotes Keratinocytes Proliferation and Migration to Enhance Wound Healing in Mice. Int J Mol Sci 2024; 25:7617. [PMID: 39062857 PMCID: PMC11277496 DOI: 10.3390/ijms25147617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The delay in wound healing caused by chronic wounds or pathological scars is a pressing issue in clinical practice, imposing significant economic and psychological burdens on patients. In particular, with the aging of the population and the increasing incidence of diseases such as diabetes, impaired wound healing is one of the growing health problems. MicroRNA (miRNA) plays a crucial role in wound healing and regulates various biological processes. Our results show that miR-618 was significantly upregulated during the inflammatory phase of wound healing.Subsequently, miR-618 promotes the secretion of pro-inflammatory cytokines and regulates the proliferation and migration of keratinocytes. Mechanistically, miR-618 binds to the target gene-Atp11b and inhibits the PI3K-Akt signaling pathway, inhibiting the epithelial-mesenchymal transition (EMT) of keratinocytes. In addition, the PI3K-Akt signaling pathway induces the enrichment of nuclear miR-618, and miR-618 binds to the promoter of Lin7a to regulate gene transcription. Intradermal injection of miR-618 antagomir around full-thickness wounds in peridermal mice effectively accelerates wound closure compared to control. In conclusion, miR-618 antagomir can be a potential therapeutic agent for wound healing.
Collapse
Affiliation(s)
- Lingling Wu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Yiyang Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Shuo Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaonan Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rabia Malik
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.W.); (W.F.); (Y.C.); (S.Z.); (Y.Z.); (X.L.); (N.D.); (W.Q.); (R.M.)
- School of Medicine, Shanghai University, Shanghai 200444, China
- Institute of Basic Medical, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing 100005, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing 100005, China
| |
Collapse
|
6
|
Wang M, Yan M, Tan L, Zhao X, Liu G, Zhang Z, Zhang J, Gao H, Qin W. Non-coding RNAs: targets for Chinese herbal medicine in treating myocardial fibrosis. Front Pharmacol 2024; 15:1337623. [PMID: 38476331 PMCID: PMC10928947 DOI: 10.3389/fphar.2024.1337623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.
Collapse
Affiliation(s)
- Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
7
|
Zhang Z, Xu Z, Wang S, Jia Z, Zhou Z, Wang C, Lin S, Feng Y, Wang X, Mao J. Optimized New Shengmai Powder modulation of cAMP/Rap1A signaling pathway attenuates myocardial fibrosis in heart failure. Chin Med 2024; 19:30. [PMID: 38402401 PMCID: PMC10894496 DOI: 10.1186/s13020-024-00902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Optimized New Shengmai Powder (ONSMP) is a traditional Chinese medicine formula with significant anti-heart failure and myocardial fibrosis effects, but the specific molecular biological mechanisms are not fully understood. METHODS In this study, we first used network pharmacology to analyze the ONSMP's active ingredients, core signaling pathways, and core targets. Second, calculate the affinity and binding modes of the ONSMP components to the core targets using molecular docking. Finally, the heart failure rat model was established by ligating the left anterior descending branch of the coronary artery and assessing the effect of ONSMP on myocardial fibrosis in heart failure using echocardiography, cardiac organ coefficients, heart failure markers, and pathological sections after 4 weeks of drug intervention. The cAMP level in rat myocardium was determined using Elisa, the α-SMA and FSP-1 positive expression determined by immunohistochemistry, and the protein and mRNA levels of the cAMP/Rap1A signaling pathway were detected by Western Blotting and quantitative real-time PCR, respectively. RESULTS The result shows that the possible mechanism of ONSMP in reducing myocardial fibrosis also includes the use of 12 active ingredients such as baicalin, vitamin D, resveratrol, tanshinone IIA, emodin, 15,16-dihydrotanshinone-i to regulate β1-AR, AC6, EPAC1, Rap1 A, STAT3, and CCND1 on the cAMP/Rap1A signaling pathway, thereby inhibiting the proliferation of cardiac fibroblasts and reduce the excessive secretion of collagen, effectively improve cardiac function and ventricular remodeling in heart failure rats. CONCLUSION This research shows that ONSMP can inhibit myocardial fibrosis and delay heart failure through the cAMP/Rap1A signaling pathway.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Zhuangzhuang Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Zhou Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ci Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiting Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| |
Collapse
|
8
|
Liang J, Cheng L, Feng J, Han Z, Huang C, Xie F, Li Y, Luo X, Wang Q, He J, Chen H. Molecular mechanism of Danshenol C in reversing peritoneal fibrosis: novel network pharmacological analysis and biological validation. BMC Complement Med Ther 2023; 23:361. [PMID: 37833759 PMCID: PMC10571429 DOI: 10.1186/s12906-023-04170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE The primary objective of this study is to elucidate the molecular mechanism underlying the reversal of peritoneal fibrosis (PF) by Danshenol C, a natural compound derived from the traditional Chinese medicine Salvia miltiorrhiza. By comprehensively investigating the intricate interactions and signaling pathways involved in Danshenol C's therapeutic effects on PF, we aim to unveil novel insights into its pharmacological actions. This investigation holds the potential to revolutionize the clinical application of Salvia miltiorrhiza in traditional Chinese medicine, offering promising new avenues for the treatment of PF and paving the way for evidence-based therapeutic interventions. METHODS Firstly, we utilized the YaTCM database to retrieve the structural formula of Danshenol C, while the SwissTargetPrediction platform facilitated the prediction of its potential drug targets. To gain insights into the genetic basis of PF, we acquired the GSE92453 dataset and GPL6480-9577 expression profile from the GEO database, followed by obtaining disease-related genes of PF from major disease databases. R software was then employed to screen for DEG associated with PF. To explore the intricate interactions between Danshenol C's active component targets, we utilized the String database and Cytoscape3.7.2 software to construct a PPI network. Further analysis in Cytoscape3.7.2 enabled the identification of core modules within the PPI network, elucidating key targets and molecular pathways critical to Danshenol C's therapeutic actions. Subsequently, we employed R to perform GO and KEGG pathway enrichment analyses, providing valuable insights into the functional implications and potential biological mechanisms of Danshenol C in the context of PF. To investigate the binding interactions between the core active components and key targets, we conducted docking studies using Chem3D, autoDock1.5.6, SYBYL2.0, and PYMOL2.4 software. We applied in vivo and in vitro experiments to prove that Danshenol C can improve PF. In order to verify the potential gene and molecular mechanism of Danshenol C to reverse PF, we used quantitative PCR, western blot, and apoptosis, ensuring robust and reliable verification of the results. RESULTS ① Wogonin, sitosterol, and Signal Transducer and Activator of Transcription 5 (STAT5) emerged as the most significant constituents among the small-molecule active compounds and gene targets investigated. ②38 targets intersected with the disease, among which MAPK14, CASP3, MAPK8 and STAT3 may be the key targets; The results of GO and KEGG analysis showed that there was a correlation between inflammatory pathway and Apoptosis. ④Real-time PCR showed that the mRNA expressions of MAPK8 (JNK1), MAPK14 (P38) and STAT3 were significantly decreased after Danshenol C treatment (P < 0.05), while the mRNA expression of CASP3 was significantly increased (P < 0.05)⑤Western blot showed that protein expressions of CASP3 and MAPK14 were significantly increased (P < 0.05), while the expression of STAT3 and MAPK8 was decreased after Danshenol C treatment (P < 0.05). ⑥There was no significant difference in flow analysis of apoptosis among groups. CONCLUSION The findings suggest that Danshenol C may modulate crucial molecular pathways, including the MAPK, Apoptosis, Calcium signaling, JAK-STAT signaling, and TNF signaling pathways. This regulation is mediated through the modulation of core targets such as STAT3, MAPK14, MAPK8, CASP3, and others. By targeting these key molecular players, Danshenol C exhibits the potential to regulate cellular responses to chemical stress and inflammatory stimuli. The identification of these molecular targets and pathways represents a significant step forward in understanding the molecular basis of Danshenol C's therapeutic effects in PF. This preliminary exploration provides novel avenues for the development of anti-PF treatment strategies and the discovery of potential therapeutic agents. By targeting specific core targets and pathways, Danshenol C opens up new possibilities for the development of more effective and targeted drugs to combat PF. These findings have the potential to transform the landscape of PF treatment and offer valuable insights for future research and drug development endeavors.
Collapse
Affiliation(s)
- Jiabin Liang
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Cheng
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zeping Han
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Fangmei Xie
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsheng Li
- Guangzhou Municipality Tianhe Nuoya Bio-Engineering Co., Ltd, Guangzhou, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qingmei Wang
- Stroke Biological Recovery Laboratory, Teaching Affiliate of Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jinhua He
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, China.
- Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China.
| |
Collapse
|
9
|
Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, Wu H. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023; 11:1252942. [PMID: 37766966 PMCID: PMC10520722 DOI: 10.3389/fcell.2023.1252942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/ml). ELISA measured IL-1β, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wei
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Wang YC, Wang H, Shao CL, Li XY, Cui J, Guo HD. Screening and identification of effective components from modified Taohong Siwu decoction for protecting H9c2 cells from damage. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00773-3. [PMID: 37294373 DOI: 10.1007/s11626-023-00773-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
We found that modified Taohong Siwu decoction (MTHSWD) had cardioprotective effects after myocardial ischemia-reperfusion injury. This study was to screen the effective components of MTHSWD that have protective effects on H9c2 cell injury through H2O2 injury model. Fifty-three active components were screened by CCK8 assay to detect cell viability. The anti-oxidative stress ability was evaluated by detecting the levels of total superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. The anti-apoptotic effect was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL). Finally, the phosphorylation levels of ERK, AKT, and P38MAPK were detected by WB (Western blot) to study the protective mechanism of effective monomers against H9c2 cell injury. Among the 53 active ingredients of MTHSWD, ginsenoside Rb3, levistilide A, ursolic acid, tanshinone I, danshensu, dihydrotanshinone I, and astragaloside I could significantly increase the viability of H9c2 cells. The results of SOD and MDA showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA could significantly reduce the content of lipid peroxide in cells. TUNEL results showed that ginsenoside Rb3, tanshinone I, danshensu, dihydrotanshinone I, and tanshinone IIA reduced apoptosis to varying degrees. The tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, and tanshinone I reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by H2O2, and the phosphorylation level of ERK was also significantly reduced by danshensu. At the same time, tanshinone IIA, ginsenoside Rb3, dihydrotanshinone I, tanshinone I, and danshensu significantly increased AKT phosphorylation level in H9c2 cells. In conclusion, the effective ingredients in MTHSWD provide basic basis and experimental reference for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-le Shao
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiu-Ya Li
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ji Cui
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|