1
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
2
|
Han X, Fu Y, Wang K, Li S, Jiang C, Wang S, Wang Z, Liu G, Hu S. Epigallocatechin gallate alleviates osteoporosis by regulating the gut microbiota and serum metabolites in rats. Food Funct 2023; 14:10564-10580. [PMID: 37953732 DOI: 10.1039/d3fo03233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Osteoporosis, one of the serious public health problems worldwide, can lead to degeneration of the bone structure and increased risk of fractures. Epigallocatechin gallate (EGCG) is a natural product with potential efficacy in inhibiting bone loss. However, the specific mechanism remains unclear. This study first investigated the role of EGCG in preventing dexamethasone (DEX)-induced osteoporosis by regulating intestinal microbiota and serum metabolites. We detected the bone density, bone microstructure, and changes in intestinal microorganisms and serum metabolites. According to our results, EGCG inhibited the decline of bone density, protected the bone microstructure, increased microbial diversity, promoted the abundance of beneficial bacteria such as Prevotellaceae and Ruminococcus, and inhibited the abundance of pathogenic bacteria such as Peptostreptococcaceae. There were also significant changes in serum metabolites among different treatments. Differential metabolites were mainly involved in sphingolipid metabolism and glycerophospholipid metabolism pathways, especially ceramide (d18:0/16:0(2OH)), phosphatidylserine (P-20:0/20:4(5Z,8Z,11Z,14Z)), phosphatidylserine (18:2(9Z,12Z)/12:0), and phosphatidylethanolamine (O-16:0/0:00), which were increased after EGCG treatment. Notably, most of the above metabolites were positively correlated with bone mineral density, BV/TV and Tb·Th, and negatively correlated with Tb·Sp. In summary, EGCG can prevent bone damage, promote the production of beneficial bacteria and metabolites, and enhance immune function. This study provides a basis and reference for the prevention and treatment of osteoporosis, as well as the application of EGCG in maintaining body health.
Collapse
Affiliation(s)
- Xuebing Han
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine, Production, Changsha 410128, PR China
| | - Yifeng Fu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Siying Li
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Chang Jiang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo 315010, China
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine, Production, Changsha 410128, PR China
| | - Gang Liu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| |
Collapse
|
3
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|