1
|
Siquier-Dameto G, Iguaran-Pérez A, Gimeno-Beltrán J, Bellia G, Giori AM, Boadas-Vaello P, Verdú E. Subcutaneous Injection and Brush Application of Ovalbumin-Aluminum Salt Solution Induces Dermatitis-like Changes in Mice. J Clin Med 2025; 14:1701. [PMID: 40095628 PMCID: PMC11900249 DOI: 10.3390/jcm14051701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Intraperitoneal sensitization combined with topical and/or epicutaneous treatment using an ovalbumin (OVA)-aluminum salt solution (OVA-AL) represents a model for inducing atopic dermatitis (AD). However, the combination of sensitization with subcutaneous treatment and cutaneous application of OVA-AL via a brush has not been explored as a method for inducing AD. Methods: Adult mice were subcutaneously injected with OVA-AL following sensitization on days 0, 7, and 14 and were treated with OVA-AL via brush application to the dorsal skin fortnightly until days 35 and 49. Concomitant alloknesis and skin changes were assessed. Mice of the Balb/c and ICR-CD1 strains were treated with OVA-AL until day 35, with only the ICR-CD1 strain continuing treatment until day 49. Control animals received saline. At 35 and 49 days, dorsal skin was harvested and processed for histological analysis. Results: Mice treated with OVA-AL developed dry skin, with no scratching or alloknesis. Histological examination of dorsal skin revealed an increase in mast cells and collagen deposition. Conclusions: Dermatitis-like symptoms were observed in mice treated with OVA-AL using this administration method.
Collapse
Affiliation(s)
- Gabriel Siquier-Dameto
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
- Dameto Clinics International, 07310 Campanet, Spain
| | - Ainhoa Iguaran-Pérez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| | | | | | | | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain; (G.S.-D.); (A.I.-P.); (P.B.-V.)
| |
Collapse
|
2
|
Zhang Q, Cho S, Kim B, Kim IH. Pinecone oil supplemented to multiparous sows from 107 days prenatal to 21 days postpartum improves reproductive performance and milk composition and affects serum parameters. J Anim Physiol Anim Nutr (Berl) 2024; 108:226-233. [PMID: 37697667 DOI: 10.1111/jpn.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Pinecone oil (PO) of Pinus koraiensis mainly contains α-pinene, β-pinene, and limonene that may ameliorate animal well-being and growth performance. This study evaluated its effects on feed intake, milk composition and yield, serum parameters, and litter growth of sows. Twenty-seven pregnant sows (parity 2-4) were distributed to three dietary treatments. The trial started on Day 107 of gestation and ended on Day 21 of lactation. Sows were given either a basal diet or the basal diet + 200 or 400 mg/kg PO. Each treatment contained nine sows and each sow was considered an experimental unit. Results showed that the average daily gain and weaned body weight of piglets from the sows fed 400 mg/kg PO supplements were higher (p < 0.05) than the piglets from the control sows. Lactose content in colostrum samples and fat content in milk samples were higher (p < 0.05) in 400 mg/kg PO-treated sows, respectively, than those from the sows fed basal diet. Additionally, cortisol concentration and aspartate aminotransferase concentration in sow serum was lowered (p < 0.05) by 400 mg/kg PO on Day 21 of lactation. In conclusion, supplementation of 400 mg/kg PO during late gestation and lactation contributed to greater offspring growth performance, possibly by enhanced milk quality and alleviated maternal stress.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Sungbo Cho
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Baeyoung Kim
- Department of Chemistry Engineering, Dankook University, Yongin-si, Gyeonggi-do, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
3
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|