1
|
Mondal H, Chandrasekaran N, Mukherjee A, Thomas J. Viral infections in cultured fish and shrimps: current status and treatment methods. AQUACULTURE INTERNATIONAL 2022; 30:227-262. [DOI: 10.1007/s10499-021-00795-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2023]
|
2
|
Thirumalaikumar E, Lelin C, Sathishkumar R, Vimal S, Anand SB, Babu MM, Citarasu T. Oral delivery of pVAX-OMP and pVAX-hly DNA vaccine using chitosan-tripolyphosphate (Cs-TPP) nanoparticles in Rohu, (Labeo rohita) for protection against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2021; 115:189-197. [PMID: 34147613 DOI: 10.1016/j.fsi.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
The present study examines the effectiveness of DNA vaccine against Aeromonas hydrophila through oral route using chitosan-tripolyphosphate (Cs-TPP) nanoparticles encapsulation. The virulent gene of outer membrane protein (OMP) and hemolysin (hly) related to pathogenicity of A. hydrophila was used to construct a DNA vaccine using pVAX1, and the construct was named as pVAX-OMP and pVAX-hly DNA vaccines. The pVAX-OMP and pVAX-hly DNA vaccines were encapsulated by Cs-TPP nanoparticles and size measured by field emission scanning electron microscopy (FE-SEM). The encapsulation efficiency of Cs-TPP nanoparticles was found to be 79.6% for pVAX-OMP DNA and 82.3% for pVAX-hly DNA binding with Cs-TPP nanoparticles. The stability and invitro release profile of plasmid DNA was also determined after encapsulation using DNase and chitosanase. DNA vaccines distribution in tissues was investigated in fish fed with the pVAX-OMP, pVAX-hly and pVAX-OMP+pVAX-hly encapsulated in Cs-TPP nanoparticles and confirmed by PCR and multiplex PCR. The results suggest that Cs-TPP nanoparticles encapsulated DNA vaccine delivered into fish by feeding. After oral vaccination of Labeo rohita were challenged with A. hydrophila by intraperitoneal injection. Relatively, gene expression of c- and g-type lysozyme followed by pro- and anti-inflammatory cytokines (Interlukin-10 and Tumor Growth Factor β) was up-regulated in heart and kidney for pVAX-OMP+pVAX-hly vaccinated group. Moreover, fish fed with pVAX-OMP+pVAX-hly encapsulated in Cs-TPP nanoparticles had a significantly higher survival rate (76.2%) against A. hydrophila. This study concludes that pVAX-OMP and pVAX-hly DNA vaccines can be delivered orally using Cs-TPP nanoparticles for protection against A. hydrophilainfection.
Collapse
Affiliation(s)
- Eswaramoorthy Thirumalaikumar
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamilnadu, India
| | - Chinnadurai Lelin
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamilnadu, India
| | - Ramamoorthy Sathishkumar
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamilnadu, India
| | - Sugumar Vimal
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam, Ranipet, 632509, Tamilnadu, India; Indigen Biotech Private Limited, Arani, Thiruvannamalai, 632301, Tamilnadu, India
| | - Setty Balakrishnan Anand
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Mariavincent Michael Babu
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamilnadu, India
| | - Thavasimuthu Citarasu
- Aquatic Animal Health Laboratory, Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629502, Tamilnadu, India.
| |
Collapse
|
3
|
Kim SW, Kim SJ, Oh MJ. Efficacy of live NNV immersion vaccine immunized at low temperature in sevenband grouper, Epinephelus septemfasciatus. Virus Res 2020; 292:198227. [PMID: 33186642 DOI: 10.1016/j.virusres.2020.198227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate safety and efficacy using a low-temperature immunization protocol with NNV in sevenband grouper, Epinephelus septemfasciatus. Further, NNV specific antibody post immunization and intramuscularly challenge was also evaluated. Immunization at low temperature resulted in a low titer virus infection in brain tissues without any clinical symptoms of infection such as sluggish behavior and/or spinning, rotating swimming being observed, and no mortality was observed. Post challenge, NNV titer NNV giving an RPS of 100 %, increased in brain tissues of naïve (non-immunized) sevenband grouper NNV giving an RPS of 100 %, with a cumulative mortality of 100 % at 25 days post-infection. No mortality or disease symptoms NNV giving an RPS of 100 %, as NNV giving and of 100 %, observed in the groups immunized at low temperature with live NNV giving an RPS of 100 %. NNV giving an RPS of 100 %. NNV specific antibody was not detected in live NNV vaccinated sevenband grouper. This is the first study that confirms that field-scale NNV immersion vaccine can protect sevenband grouper against lethal infection with NNV at natural seawater temperature under the gradually increased from 14.3-24.8 °C.
Collapse
Affiliation(s)
- Si-Woo Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Gyengsangbuk-do Fishery Technology Center, Pohang, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
4
|
Chen-Fei L, Chou-Min C, Jiun-Yan L. Feasibility of vaccination against Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. FISH & SHELLFISH IMMUNOLOGY 2020; 104:431-438. [PMID: 32580003 DOI: 10.1016/j.fsi.2020.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The giant freshwater prawn/giant river prawn, Macrobrachium rosenbergii is one of the high market value crustaceans cultured worldwide. The intensified aquaculture of the species has led to the outbreak of infectious diseases, prominently, the white tail disease (WTD). It is caused by the infection of Macrobrachium rosenbergii nodavirus (MrNV), which was classified in the family of Nodaviridae. To-date, there are no effective prophylactic and therapeutic agents available against MrNV infection. Vaccination is known to be the most effective prophylactic agent in disease prevention. However, vaccine development against virus infection in crustaceans is equivocal. The feasibility of vaccination in conferring immune protection in crustaceans against infectious diseases is disputable. The argument lies in the fact that crustaceans do not possess adaptive immunity, which is the main immune component that functions to establish immunological memory upon vaccination. Nevertheless, an increasing number of literatures has been documented, which concerns the development of vaccines against infectious diseases in crustaceans. The current review deliberates different approaches in vaccine development against MrNV, which were documented in the past years. It is noteworthy that the live-attenuated MrNV vaccine has not been experimented by far. Thus, the potential of live-attenuated MrNV vaccine in conferring long-term immune protection through the establishment of innate immune memory is currently being discussed.
Collapse
Affiliation(s)
- Low Chen-Fei
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Chong Chou-Min
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Loh Jiun-Yan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Genome-Wide identification of doublesex and Mab-3-Related transcription factor (DMRT) genes in nile tilapia ( oreochromis niloticus). ACTA ACUST UNITED AC 2019; 24:e00398. [PMID: 31799146 PMCID: PMC6881697 DOI: 10.1016/j.btre.2019.e00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022]
Abstract
Doublesex and Mab-3-related transcription factor (DMRT) gene family is extensively known for its contribution in sex determination and differentiation across phyla. Here we report the identification of five DM (doublesex and mab-3) domain genes in the Nile tilapia which includes DMRT1, DMRTa2, DMRT2a, DMRT2b and DMRT3a. The full-length sequence of DMRT genes ranges from 3526 (DMRTA2) to 1471bp (DMRT1) which encode putative proteins series from 469 to 372 amino acids. All the DMRT proteins contained at least one conserved DNA-binding DM domain. Sub-cellular localization and gene ontology revealed DMRT1 protein is maximum localized in nuclear region and gene ontology analysis showed the molecular function of 48.2%, biological process 43.6% and cellular component 25%. Chromosomal location and synteny analysis displayed that DMRT genes mostly cluster linkage group 12. Altogether, our findings provide vital genomic information for future studies of biochemical, physiological, and phylogenetic studies on DMRT genes in teleost.
Collapse
|
6
|
Citarasu T, Lelin C, Thirumalaikumar E, Michael Babu M, Vakharia VN. Macrobrachium rosenbergii nodavirus (MrNV)-CP-RNA-2 DNA vaccine confers protective immunity in giant freshwater prawn Macrobrachium rosenbergii against MrNV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:319-326. [PMID: 30471336 DOI: 10.1016/j.fsi.2018.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Macrobrachium rosenbergii Nodavirus (MrNV) causes white tail disease (WTD) in Giant freshwater prawn Macrobrachium rosenbergii which leads to immense economic losses in hatcheries and farms. In the present study, we cloned the capsid protein gene of MrNV-CP-RNA-2 (1146 bp) into a DNA vaccine vector pVAX1 to form MrNV-CP-RNA-2- pVAX1. The bacterial transformant, containing the MrNV-CP gene, was coated on the fish diet pellets and fed to juvenile M. rosenbergii for 40 days. After the vaccine delivery, group of M. rosenbergii were challenged with virulent MrNV on 20 and 40th days post-vaccination (dpv) respectively and monitored for the survival. The non-vaccinated M. rosenbergii succumbed to death (100%) within 5 days, whereas the MrNV-CP-RNA-2- pVAX1 treated groups had the survivals of 60 and 80% in 20 and 40 dpv respectively (P ≤ 0.001). To study the MrNV infection level, double step PCR was performed at different dpv. The results revealed that in 20 dpv group, the infection was decreased to 65% and in 40 dpv group the infection decreased to 69% from control diet fed prawns (P < 0.001). Haematological parameters like coagulation time, total haemocyte count (THC) and oxyhaemocyanin levels were performed for the control and vaccinated prawns. The vaccination helped to decrease the time of coagulation, improved THC and oxyhaemocyanin levels at a significant level (p < 0.001) when compared to the non-vaccinated group. The immunological parameters like prophenol oxidase (ProPO), superoxide anion and intra-agar lysozyme activity were also performed and the results revealed that the level of proPO, superoxide anion and lysozyme activities were significantly (P ≤ 0.05) increased in 20 and 40 dpv groups respectively, when compared with the non-vaccinated groups. Based on the vaccination trials, the DNA vaccine construct MrNV-CP-RNA-2-pVAX1 effectively improved the survival against MrNV challenge, helped to decrease viral load and enhanced the immune system to protect the prawn from MrNV infection. This vaccine construct is highly useful to protect the M. rosenbergii from MrNV infection.
Collapse
Affiliation(s)
- Thavasimuthu Citarasu
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629 502, Tamilnadu, India; Institute of Marine and Environmental Technology (IMET), University of Maryland Baltimore Country (UMBC), Baltimore, MD, 21202, USA.
| | - Chinnadurai Lelin
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629 502, Tamilnadu, India
| | - Eswaramoorthy Thirumalaikumar
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629 502, Tamilnadu, India
| | - Mariavincent Michael Babu
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, 629 502, Tamilnadu, India
| | - Vikram N Vakharia
- Institute of Marine and Environmental Technology (IMET), University of Maryland Baltimore Country (UMBC), Baltimore, MD, 21202, USA.
| |
Collapse
|
7
|
C. Nandanpawar P, Ashraf Rather M, Ramesh Badhe M, Sharma R. Assessment of DNA Damage During Gene Delivery in Freshwater Prawn by Chitosan Reduced Gold Nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increasing application of nanoparticles both in industries and in agricultural fields has led to its accumulation in the aquatic ecosystem through water run-off. Insights into the validity of safer nanoparticles such as gold and chitosan are fairly established. However, its effect on aquatic invertebrates has been less studied. The present study was aimed to study effects of chitosan reduced gold nanoparticles (CRGNPs) during green fluorescent protein (GFP) encoding plasmid delivery in giant freshwater prawn, macrobrachium rosenbergii. The mean particle size and zeta potential CRGNPs was 33.7 nm and 24.79 mV respectively. Prawn juveniles were exposed to nanoparticles concentrations (10 µg/L, 20 µg/L) of CRGNPs by immersion treatment for a period of 36 hours. GFP was ubiquitously expressed in muscle tissues of prawns. The comet assay indicated dose dependent genotoxicity of CRGNPs in gill, pleopod and muscle tissues which was in conformity with its bioaccumulation pattern in vivo. The highest bioaccumulation of CRGNPs was found in Gills, followed by pleopods and least in muscles. Hence, the toxicological potential of CRGNPs to the environment cannot be denied and demands more research on the particular aspect. The doses standardized in the present study would be helpful in safer nano-gene delivery in aquatic invertebrates and development of transgenics employing less cost.
Collapse
Affiliation(s)
- Priyanka C. Nandanpawar
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| | | | - Mohan Ramesh Badhe
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| | - Rupam Sharma
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| |
Collapse
|
8
|
Gye HJ, Oh MJ, Nishizawa T. Lack of nervous necrosis virus (NNV) neutralizing antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection. Vaccine 2018; 36:1863-1870. [PMID: 29503111 DOI: 10.1016/j.vaccine.2018.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 10/17/2022]
Abstract
Viral nervous necrosis (VNN) is caused by nervous necrosis viruses (NNVs) belonging to genus Betanodavirus (Nodaviridae). It is one of the most serious diseases in aquaculture industry worldwide. In the present study, the kinetics of NNV-infectivity and NNV-specific antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection was determined. When fish were infected with NNV at 17.5 °C, and reared for 84 days at natural seawater temperature (increasing rate: approximately 0.1 °C/day), NNV infectivity peaked on day 14 with 107.80 TCID50/g at the highest, and declined to below the detection limit. When convalescent fish were reared at 27 °C, and re-infected with NNV at 104.3 or 106.3 TCID50/fish, no mortality was observed although NNV multiplied up to 108.80 and 107.80 TCID50/g at the highest, respectively, suggesting NNV-specific immune response. It also revealed that convalescent fish were re-infected by NNV although NNV multiplication was strongly regulated. Interestingly, NNV-specific antibodies were detectable in 20% and ≥80% of convalescent fish before and after re-infection with NNV, respectively. However, no NNV-neutralizing activity was detected before and after re-infection in almost all of the convalescent fish. Therefore, NNV-neutralizing antibodies might not be necessary for the protection of convalescent fish against NNV re-infection after previous NNV infection.
Collapse
Affiliation(s)
- Hyun Jung Gye
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Toyohiko Nishizawa
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
9
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G. Effects of nanoparticles in species of aquaculture interest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17326-17346. [PMID: 28597390 DOI: 10.1007/s11356-017-9360-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 05/08/2023]
Abstract
Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Kheyrollah Khosravi-Katuli
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran.
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment, National Research Council (CNR IAMC), Via Roma 3, 74100, Taranto, Italy
| | - Giusy Lofrano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126, Naples, Italy
| | - Gonçalo Vale
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Torre Sul Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Harry Dallas, TX, 75390, USA
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126, Naples, Italy.
| |
Collapse
|
11
|
Rathor PK, Bhat IA, Rather MA, Gireesh-Babu P, Kumar K, Purayil SBP, Sharma R. Steroidogenic acute regulatory protein (StAR) gene expression construct: Development, nanodelivery and effect on reproduction in air-breathing catfish, Clarias batrachus. Int J Biol Macromol 2017; 104:1082-1090. [PMID: 28666831 DOI: 10.1016/j.ijbiomac.2017.06.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Abstract
Steroidogenic acute regulatory protein (StAR) is responsible for the relocation of cholesterol across mitochondrial membrane in vertebrates and is, therefore, a key factor in regulating the rate and timing of steroidogenesis. In the present study, we developed chitosan nanoparticle (CNP) conjugated StAR gene construct (CNP-pcDNA4-StAR) in a eukaryotic expression vector, pcDNA4/HisMax A. CNPs of 135.4nm diameter, 26.7mV zeta potential and 0.381 polydispersity index were used for conjugation. The loading efficiency (LE) of pcDNA4-StAR construct with CNPs was found to be 86%. After the 24h of intramuscular injection, the CNP-pcDNA4-StAR plasmid could be detected from testis, brain, kidney and muscle tissues of Clarias batrachus. The transcript levels of important reproductive genes viz. cyp11a1, cyp17a1, 3β-hsd, 17β-hsd and cyp19a1 in CNP-pcDNA4-StAR treated group were initially low up to 24h, but significantly increased subsequently up to 120h. In naked pcDNA4-StAR treated group, the mRNA level of 3β-hsd, 17β-hsd and cyp19a1 increased initially up to 24h, while cyp11a1 and cyp17a1 increased up to 48h and then started declining. Similar results were obtained for 11-Ketotestosterone and 17β-estradiol. The results indicate relatively long lasting effects of nano-conjugated construct compared to the construct alone. Furthermore, the histopathology of gonads and liver authenticates its possible role in the gonadal development in fish without any adverse effect.
Collapse
Affiliation(s)
- Pravesh Kumar Rathor
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mohd Ashraf Rather
- Department of Fisheries Biology, College of Fisheries Shirgoan, Ratnagiri, 415712 Maharashtra, India
| | - Pathakota Gireesh-Babu
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Kundan Kumar
- Division of Aquatic Environmental and Health Management, Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|