1
|
Microbial and Antimicrobial Resistance Profiles of Microbiota in Common Carps ( Cyprinus carpio) from Aquacultured and Wild Fish Populations. Animals (Basel) 2021; 11:ani11040929. [PMID: 33805887 PMCID: PMC8064328 DOI: 10.3390/ani11040929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary This study was focused on differences in microbial varieties in common carp living in two different environments: open fish ponds and in nature. The results demonstrated that wild fish carry more than 2.5 times the bacterial species in their gut compared with aquacultured fish. More than 400 species of bacteria were identified, the majority of which are considered beneficial microbiota. Besides bacterial variety, it was determined that aquacultured fish harbored more bacteria that are treated as pathogens in animals and humans. The frequency of antimicrobial resistance in bacterial indicators was more common in aquacultured fish compared with bacteria from a wild population, therefore fish farming can be treated as a potential source of environmental contamination with antimicrobial resistant bacteria. Abstract In this study we analyzed differences in microbial composition and antimicrobial resistance profiles in common carp living in two different environments: fish ponds, where carp have been kept under the same growing conditions over the last 50 years, and from the wild. The results demonstrated that wild fish carry a great variety of bacterial species (448 species with a prevalence of at least 0.01% from the total number of reads). Aquacultured individuals harbored 2.56 times fewer species in their gut. Significant microbial differences were observed in all taxonomic ranks, including bacterial classes and phyla. Besides bacterial variety, it was determined that aquacultured fish harbored more bacteria that are considered pathogens or opportunistic pathogens, such as Moraxellaceae, Flavobacteriaceae, and Staphylococcaceae. The frequency of antimicrobial resistance in bacterial indicators was more common in aquacultured fish than in wild fish, therefore fish farming may be a potential source of environmental contamination with antimicrobial resistant bacteria.
Collapse
|
2
|
Zhang Z, Zhang C, Dai X, Zhang R, Cao X, Wang K, Huang X, Ren Q. Two relish isoforms produced by alternative splicing participate in the regulation of antimicrobial peptides expression in Procambarus clarkii intestine. FISH & SHELLFISH IMMUNOLOGY 2020; 99:107-118. [PMID: 32035167 DOI: 10.1016/j.fsi.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Nuclear factor κB (NF-κB) plays a key role in the innate immunity of invertebrates. Relish belongs to the NF-κB family. In insects, alternative splicing induces the sequence diversity of the Relish gene. However, information on the roles of various relish isoforms in crustacean innate immune response is limited. Here, two alternatively spliced Relish isoforms (designated as SPcRelish and LPcRelish) were identified from freshwater crayfish (Procambarus clarkii), and functional analysis was performed. The Relish gene has 25 exons and 24 introns. The long isoform LPcRelish is fully spliced, whereas the short isoform SPcRelish is alternatively spliced and contains exon 1-9 and a retention of intron 9. LPcRelish contains the Rel homology domain (RHD), the ig-like, plexins, transcription factors (IPT), and ankyrin-repeat (ANK) inhibitory domain. However, SPcRelish contains only the RHD and IPT domain, and does not have an ANK domain. The transcripts of SPcRelish and LPcRelish can be regulated by Vibrio parahaemolyticus. The intestinal immunological barrier and bacterial balance in the intestine play crucial roles in host health. In this study, we analyzed the connection between Relish isoforms and the transcripts of antimicrobial peptides (AMPs) in intestine. The transcripts of all the tested AMPs, except ALF-41125, were upregulated by V. parahaemolyticus. The knock down of the SPcRelish gene resulted in a significant decrease in the expression levels of ALF-7032, ALF-13162, and Crustin-42012 during V. parahaemolyticus invasion. The expression levels of four AMP genes (ALF-41125, ALF-42430, Crustin-41354, and Crustin-42993) were obviously increased in V. parahaemolyticus-challenged SPcRelish-silenced crayfish. ALF-7032, ALF-9228, ALF-13162, ALF-42430, Crustin-41354, Crustin-42012, and Crustin-42993 were evidently downregulated in V. parahaemolyticus-infected LPcRelish-silenced crayfish. Overall, generating the two Relish isoforms by alternative splicing may be an important mechanism of the host immune system to promote molecular diversity, which results in the functional diversity of the relish transcription factor.
Collapse
Affiliation(s)
- Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
3
|
Xu Y, Shi J, Hao W, Xiang T, Zhou H, Wang W, Meng Q, Ding Z. iTRAQ-based quantitative proteomic analysis of Procambarus clakii hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2018; 77:438-444. [PMID: 29625245 DOI: 10.1016/j.fsi.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
As a new-found aquaculture pathogen, Spiroplasma eriocheiris, has resulted in inconceivable economic losses in aquaculture. In the infection of S. eriocheiris, the Procambarus clakii hemocytes have indicated to be major target cells. What was designed to examine in our study is the hemocytes' immune response at the protein levels. Before the pathogen was injected and after 192 h of post-injection, the differential proteomes of the crayfish hemocytes were analyzed immediately by isobaric tags for relative and absolute quantization (iTRAQ) labeling, followed by liquid chromatogramphytandem mass spectrometry (LC-MS/MS). This research had identified a total of 285 differentially expressed proteins. Eighty-three and 202 proteins were up-regulated and down-regulated, respectively, caused by the S. eriocheiris infection. Up-regulated proteins included alpha-2-macroglobulin (α2M), vitellogenin, ferritin, etc. Down-regulated proteins, involved with serine protease, peroxiredoxin 6, 14-3-3-like protein, C-type lectin, cdc42 homolog precursor, etc. The prophenoloxidase-activating system, antimicrobial action involved in the immune responses of P. clarkii is considered to be damaged due to S. eriocheiris infection. The present work could lay the foundation for future research on the proteins related to the susceptibility/resistance of P. clarkii to S. eriocheiris. In addition, it is helpful for our understanding molecular mechanism of disease processes in crayfishes.
Collapse
Affiliation(s)
- Yinbin Xu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Jinyan Shi
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China
| | - Wenjing Hao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Tao Xiang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Haifeng Zhou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Zhengfeng Ding
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China.
| |
Collapse
|