1
|
Kim SJ, Lee SJ, Jung SJ, Jung MH. Effect of rock bream iridovirus (RBIV) contained tissue intake on rock bream (Oplegnathus fasciatus) mortality and blood cell distribution. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109858. [PMID: 39187140 DOI: 10.1016/j.fsi.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Rock bream (Oplegnathus fasciatus) is one of the highly priced cultured marine fish in Korea. Rock bream iridovirus (RBIV) outbreaks in aquaculture farms may involve environmental factors, co-infection with other pathogenic microorganisms and grounded (raw) fish feed. This study evaluated the effects of RBIV-containing tissue intake on mortality and oral transmission in rock bream. Virus-containing tissues administered to rock bream [50 mg (1.53 × 108/major capsid protein, MCP gene copies) to 2400 mg (7.34 × 109)] held at 23 °C lead to 100 % mortality by 27 days post administration. Interestingly, the mortality rates were not viral dose- or concentration dependent. Further, high MCP gene copy numbers were observed in the gill, liver, intestine, stomach, spleen, heart, kidney, brain and muscle tissues (viral load range of 3.03 × 106 to 4.01 × 107/mg, average viral load 1.70 × 107/mg) of dead rock bream. Moreover, a high viral load was detected in the intestine and stomach, where the virus was directly administered. This indicated that the intake of RBIV-containing tissue feed weakens the intestinal mucosal immunity and increases viral load in the intestine. Moreover, the levels of complete blood cell count (CBC) indicators, such as red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) significantly decreased from 15 dpi with red blood cell distribution width (RDW), and white blood cells (lymphocyte, monocyte and granulocyte) significantly increased from the initial to later stage of infection. These results highlight the significance of blood-mediated indicators against RBIV infection in rock bream. We demonstrate the existence of an oral transmission route for RBIV in rock bream. Our findings indicate that pathogen-containing feed is an important risk factor for disease outbreaks in rock bream.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Pathology Division, National Institute of Fisheries Science, Republic of Korea
| | - Seok-Ju Lee
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Myung-Hwa Jung
- Department of Aqualife Medicine, Kongju National University, Republic of Korea.
| |
Collapse
|
2
|
Kim SJ, Cheon J, Cho MY, Jung SJ, Jung MH. Abnormalities in red blood cell production and pathogenesis of anemia in the progression of rock bream iridovirus (RBIV). Virus Res 2024; 339:199278. [PMID: 37984754 PMCID: PMC10709172 DOI: 10.1016/j.virusres.2023.199278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Rock bream iridovirus (RBIV), belonging to Megalocytivirus, causes severe mortality in rock bream. Almost all deaths associated with RBIV are accompanied by splenic enlargement and anemia. Although red blood cells (RBCs) are involved in the immune response against viral infections, their involvement in rock bream has not yet been studied in terms of the immune response against RBIV. In this study, the viral replication patterns, blood characteristics and anemia-related factors were evaluated in rock bream post RBIV infection. The virus-infected RBCs of rock bream demonstrated similarities in the expression levels of hemoglobins (HGB) (α and β), cytokine-dependent hematopoietic cell linker (CLNK) and hematopoietic transcription factor GATA (GATA), with significantly decreasing levels from 4 days post infection (dpi) to 17 (dpi), when the viral replication was at its peak. This suggests that the expression of blood-related genes is inadequate for HGB synthesis and RBC production, thereby causing anemia leading to death. Moreover, the levels of complete blood cell count (CBC) indicators, such as RBCs, HGB and hematocrit (HCT), significantly decreased from 10 to 17 dpi. This phenomenon suggests that blood-related gene expression and/or RBC-, HGB- and HCT-related levels are critical factors in RBIV-induced anemia and disease progression. These results highlight the significance of blood-mediated immune responses against RBIV infection in rock bream. Understanding blood-related gene levels to identify blood-related immune response interactions in rock bream will be useful for development of future strategies in controlling RBIV diseases in rock bream.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Pathology Division, National Institute of Fisheries Science, Republic of Korea
| | - Jayeon Cheon
- Department of MarineBio and Medical Sciences, Hanseo University, Republic of Korea
| | - Mi Young Cho
- Pathology Division, National Institute of Fisheries Science, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Myung-Hwa Jung
- Department of MarineBio and Medical Sciences, Hanseo University, Republic of Korea.
| |
Collapse
|
3
|
Fu W, Li Y, Fu Y, Zhang W, Luo P, Sun Q, Yu F, Weng S, Li W, He J, Dong C. The Inactivated ISKNV-I Vaccine Confers Highly Effective Cross-Protection against Epidemic RSIV-I and RSIV-II from Cultured Spotted Sea Bass Lateolabrax maculatus. Microbiol Spectr 2023; 11:e0449522. [PMID: 37222626 PMCID: PMC10269448 DOI: 10.1128/spectrum.04495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The genus Megalocytivirus of the family Iridoviridae is composed of two distinct species, namely, infectious spleen and kidney necrosis virus (ISKNV) and scale drop disease virus (SDDV), and both are important causative agents in a variety of bony fish worldwide. Of them, the ISKNV species is subdivided into three genotypes, namely, red seabream iridovirus (RSIV), ISKNV, and turbot reddish body iridovirus (TRBIV), and a further six subgenotypes, RSIV-I, RSIV-II, ISKNV-I, ISKNV-II, TRBIV-I, and TRBIV-II. Commercial vaccines derived from RSIV-I , RSIV-II and ISKNV-I have been available to several fish species. However, studies regarding the cross-protection effect among different genotype or subgenotype isolates have not been fully elucidated. In this study, RSIV-I and RSIV-II were demonstrated as the causative agents in cultured spotted seabass, Lateolabrax maculatus, through serial robust evidence, including cell culture-based viral isolation, whole-genome determination and phylogeny analysis, artificial challenge, histopathology, immunohistochemistry, and immunofluorescence as well as transmission electron microscope observation. Thereafter, a formalin-killed cell (FKC) vaccine generated from an ISKNV-I isolate was prepared to evaluate the protective effects against two spotted seabass original RSIV-I and RSIV-II. The result showed that the ISKNV-I-based FKC vaccine conferred almost complete cross-protection against RSIV-I and RSIV-II as well as ISKNV-I itself. No serotype difference was observed among RSIV-I, RSIV-II, and ISKNV-I. Additionally, the mandarin fish Siniperca chuatsi is proposed as an ideal infection and vaccination fish species for the study of various megalocytiviral isolates. IMPORTANCE Red seabream iridovirus (RSIV) infects a wide mariculture bony fish and has resulted in significant annual economic loss worldwide. Previous studies showed that the phenotypic diversity of infectious RSIV isolates would lead to different virulence characteristics, viral antigenicity, and vaccine efficacy as well as host range. Importantly, it is still doubted whether a universal vaccine could confer the same highly protective effect against various genotypic isolates. Our study here presented enough experimental evidence that a water in oil (w/o) formation of inactivated ISKNV-I vaccine could confer almost complete protection against RSIV-I and RSIV-II as well as ISKNV-I itself. Our study provides valuable data for better understanding the differential infection and immunity among different genotypes of ISKNV and RSIV isolates in the genus Megalocytivirus.
Collapse
Affiliation(s)
- Weixuan Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Yuting Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wenfeng Zhang
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Panpan Luo
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Qianqian Sun
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wangdong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Fusianto CK, Becker JA, Subramaniam K, Whittington RJ, Koda SA, Waltzek TB, Murwantoko, Hick PM. Genotypic Characterization of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Southeast Asian Aquaculture. Transbound Emerg Dis 2023; 2023:6643006. [PMID: 40303689 PMCID: PMC12017167 DOI: 10.1155/2023/6643006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 05/02/2025]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104-4.58 × 109 ISKNV genome copies mg-1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92-105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.
Collapse
Affiliation(s)
- Cahya K. Fusianto
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Joy A. Becker
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Camden, NSW 2570, Australia
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Richard J. Whittington
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Samantha A. Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Murwantoko
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora 1, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia
| | - Paul M. Hick
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Jung MH, Nikapitiya C, Kim SJ, Han HJ, Kim MS, Choi HS, Jung SJ. Protective immunity induced by ankyrin repeat-containing protein-based DNA vaccine against rock bream iridovirus (RBIV) in rock bream (Oplegnathus fasciatus). Virus Res 2022; 318:198827. [DOI: 10.1016/j.virusres.2022.198827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022]
|
6
|
Jung MH, Kole S, Jung SJ. Efficacy of saponin-based inactivated rock bream iridovirus (RBIV) vaccine in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:12-22. [PMID: 34974155 DOI: 10.1016/j.fsi.2021.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Rock bream iridovirus (RBIV) causes severe mortality in rock bream (Oplegnathus fasciatus) for last two decades. In view of this constant threat of RBIV to the rock bream industry, we conducted the present study with the aim to develop a safe and efficient remedial measure against the virus. In this study, we evaluated the safety and potentiality of squalene, aluminium hydroxide and saponin adjuvants, singly or in combinations, which can be used for developing an efficient inactivated (IV) vaccine to protect rock bream from RBIV infection. The evaluation results demonstrated that saponin (Sa) has the required potential in enacting the antiviral immune response in the host and in providing protection against virus mediated lethality, without causing any adverted side-effects. The study further, showed that a single primary dose of Sa-adjuvanted IV vaccine can confer moderate protections in short (60.04% relative percent mortality (RPS) at 4 wpv) and medium (53.38% RPS at 8 wpv) term post RBIV challenge; whereas, the same vaccine when administered in a prime-boost strategy, it resulted enhanced 93.34% RPS post virus challenge at 4 and 8 wpv. The moderate to high survivability demonstrated by the Sa-adjuvanted IV vaccine, was substantiated by the significant (p < 0.05) upregulation of IL-1β, Mx and PKR gene transcript. All surviving fish from the Sa-adjuvanted IV vaccine groups were strongly protected from re-infection with RBIV (1.1 × 107) at 70 days post infection (dpi). In conclusion, it can be inferred that, Sa-adjuvanted IV RBIV vaccine can be an efficient control measure to protect the rock bream aquaculture industry against the lethal RBIV virus.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
7
|
Jung MH, Chico V, Ciordia S, Mena MC, Jung SJ, Ortega-Villaizan MDM. The Megalocytivirus RBIV Induces Apoptosis and MHC Class I Presentation in Rock Bream (Oplegnathus fasciatus) Red Blood Cells. Front Immunol 2019; 10:160. [PMID: 30886611 PMCID: PMC6410659 DOI: 10.3389/fimmu.2019.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023] Open
Abstract
Rock bream iridovirus (RBIV) causes severe mass mortality in Korean rock bream (Oplegnathus fasciatus) populations. To date, immune defense mechanisms of rock bream against RBIV are unclear. While red blood cells (RBCs) are known to be involved in the immune response against viral infections, the participation of rock bream RBCs in the immune response against RBIV has not been studied yet. In this study, we examined induction of the immune response in rock bream RBCs after RBIV infection. Each fish was injected with RBIV, and virus copy number in RBCs gradually increased from 4 days post-infection (dpi), peaking at 10 dpi. A total of 318 proteins were significantly regulated in RBCs from RBIV-infected individuals, 183 proteins were upregulated and 135 proteins were downregulated. Differentially upregulated proteins included those involved in cellular amino acid metabolic processes, cellular detoxification, snRNP assembly, and the spliceosome. Remarkably, the MHC class I-related protein pathway was upregulated during RBIV infection. Simultaneously, the regulation of apoptosis-related proteins, including caspase-6 (CASP6), caspase-9 (CASP9), Fas cell surface death receptor (FAS), desmoplakin (DSP), and p21 (RAC1)-activated kinase 2 (PAK2) changed with RBIV infection. Interestingly, the expression of genes within the ISG15 antiviral mechanism-related pathway, including filamin B (FLNB), interferon regulatory factor 3 (IRF3), nucleoporin 35 (NUP35), tripartite motif-containing 25 (TRIM25), and karyopherin subunit alpha 3 (KPNA3) were downregulated in RBCs from RBIV-infected individuals. Overall, these findings contribute to the understanding of RBIV pathogenesis and host interaction.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Gwangju, South Korea
| | | | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Gwangju, South Korea
| | | |
Collapse
|
8
|
Jung MH, Nikapitiya C, Jung SJ. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus). Vaccine 2018; 36:802-810. [DOI: 10.1016/j.vaccine.2017.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
9
|
Jung MH, Jung SJ. Innate immune responses against rock bream iridovirus (RBIV) infection in rock bream (Oplegnathus fasciatus) following poly (I:C) administration. FISH & SHELLFISH IMMUNOLOGY 2017; 71:171-176. [PMID: 28986216 DOI: 10.1016/j.fsi.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Poly (I:C) showed promise as an immunoprotective agents in rock bream against rock bream iridovirus (RBIV) infection. In this study, we evaluated the time-dependent virus replication pattern and antiviral immune responses in RBIV-infected rock bream with and without poly (I:C) administration. In the poly (I:C)+virus-injected group, virus copy numbers were more than 18.9-, 24.0- and 479.2-fold lower than in the virus only injected group at 4 (4.73 × 104 and 8.95 × 105/μl, respectively), 7 (3.67 × 105 and 8.81 × 106/μl, respectively) and 10 days post infection (dpi) (1.26 × 105 and 6.02 × 107/μl, respectively). Moreover, significantly high expression levels of TLR3 (8.6- and 7.7-fold, at 4 and 7 dpi, respectively) and IL1β (3.6-fold at 2 dpi) were observed in the poly (I:C)+virus-injected group, but the expression levels were not significantly in the virus-injected group. However, IL8 and TNFα expression levels showed no statistical significance in both groups. Mx, ISG15 and PKR were significantly highly expressed from 4 to 10 dpi in the virus-injected group. Nevertheless, in the poly (I:C)+virus-injected group, Mx and ISG15 expression were significantly expressed from 2 dpi. In summary, poly (I:C) administration in rock bream induces TLR3, IL1β, Mx and ISG15-mediated immune responses, which could be a critical factor for inhibition of virus replication.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
10
|
Jung MH, Jung SJ. Gene expression regulation of the TLR9 and MyD88-dependent pathways in rock bream against rock bream iridovirus (RBIV) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:507-514. [PMID: 28917488 DOI: 10.1016/j.fsi.2017.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Rock bream iridovirus (RBIV), which is a member of the Megalocytivirus genus, causes severe mass mortalities in rock bream in Korea. To date, the innate immune defense mechanisms of rock bream against RBIV is unclear. In this study, we assessed the expression levels of genes related to TLR9 and MyD88-dependent pathways in RBIV-infected rock bream in high, low or no mortality conditions. In the high mortality group (100% mortality at 15 days post infection (dpi)), high levels of TLR9 and MyD88 expressions (6.4- and 2.4-fold, respectively) were observed at 8 d and then reduced (0.6- and 0.1-fold, respectively) with heavy viral loads at 10 dpi (2.21 × 107/μl). Moreover, TRAF6, IRF5, IL1β, IL8, IL12 and TNFα expression levels showed no statistical significance until 10 dpi. Conversely, in the low mortality group (28% expected mortality at 35 dpi), TLR9, MyD88 and TRAF6 expression levels were significantly higher than those in the control group at several sampling points until 30 dpi. Higher levels of IRF5, IL1β, IL8, IL12 and TNFα expression were also observed, however, these were not significantly different from those of the control group. In the no mortality group (0% mortality at 40 dpi), significantly higher levels of MyD88 (2 d, 4 d and 40 dpi), TRAF6 (2 dpi), IL1β (4 dpi) and IL8 (2 d and 4 dpi) expression were observed. In summary, RBIV-infected rock bream induces innate immune response, which could be a major contributing factor to effective fish control over viral transcription. MyD88, TRAF6, IL1β and IL8-related immune responses were activated in fish survivor condition (low or no mortality group). This is a critical factor for RBIV disease recovery; however, these immune responses did not efficiently respond in fish dead condition (high mortality group).
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
11
|
Jung MH, Nikapitiya C, Vinay TN, Lee J, Jung SJ. Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures. FISH & SHELLFISH IMMUNOLOGY 2017; 70:731-735. [PMID: 28919266 DOI: 10.1016/j.fsi.2017.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Rock bream iridovirus (RBIV) is a member of the Megalocytivirus genus that causes severe mortality to rock bream. Water temperature is known to affect the immune system and susceptibility of fish to RBIV infection. In this study, we evaluated the time dependent virus replication pattern and time required to completely eliminate virus from the rock bream body against RBIV infection at different water temperature conditions. The rock bream was exposed to the virus and held at 7 (group A1), 4 (group A2) and 2 days (group A3) at 23 °C before the water temperature was reduced to 17 °C. A total of 28% mortality was observed 24-35 days post infection (dpi) in only the 7 day exposure group at 23 °C. In all 23 °C exposure groups, virus replication peaked at 20 to 22 dpi (106-107/μl). In recovery stages (30-100 dpi), the virus copy number was gradually reduced, from 106 to 101 with faster decreases in the shorter exposure period group at 23 °C. When the water temperature was increased in surviving fish from 17 to 26 °C at 70 dpi, they did not show any mortality or signs of disease and had low virus copy numbers (below 102/μl). Thus, fish need at least 50 days from peaked RBIV levels (approximately 20-25 dpi) to inhibit the virus. This indicates that maintaining the fish at low water temperature (17 °C) for 70 days is sufficient to eradicate RBIV from fish body. Thus, RBIV could be eliminated slowly from the fish body and the virus may be completely eliminated under the threshold of causing mortality.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | | | | | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
12
|
Jung MH, Jung SJ. CpG ODN 1668 induce innate and adaptive immune responses in rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 69:247-257. [PMID: 28860075 DOI: 10.1016/j.fsi.2017.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream in Korea. CpG ODN 1668 showed promise as immunoprotective agents against RBIV infection in rock bream. In this study, we assessed innate/adaptive-related gene expression patterns in RBIV-infected rock bream with and without CpG ODN 1668 administration to determine important immune defense related factors that may affect fish survival. In the CpG ODN 1668+virus-injected group, virus copies were more than 7.4- to 790591-fold lower than in the virus-injected group at 4 d (8.79 × 104 and 6.58 × 105/μl, respectively), 7 d (5.30 × 102 and 2.29 × 107/μl, respectively) and 10 dpi (7.79 × 101 and 6.16 × 107/μl, respectively). Furthermore, in the CpG ODN 1668+virus-injected group, significantly higher levels of MyD88 (6 h, 1 d, 4 d and 7 dpi), IL1β (1 d, 2 d and 7 dpi) and perforin/granzyme (1 dpi) expression were observed, whereas these genes were not significantly expressed in the virus-injected group at that time points. Mx, ISG15 and PKR were significantly highly expressed at 4 d and 7 dpi and reduced when low viral loads at 10 dpi in the CpG ODN 1668+virus-injected group. Conversely, in the virus-injected group, Mx, ISG15 and PKR expression were significantly higher than the control group until 10 dpi. However, MHC class I, CD8, Fas, Fas ligand and caspases (3, 8 and 9) expression levels showed no statistically significant differences between virus- and CpG ODN 1668+virus-injected group. In summary, CpG ODN 1668 administration in fish induces innate immune response or cell death pathway, which could be a major contributing factor to effective fish control over viral transcription on 4 d to 10 dpi. Expression of MyD88, IL1β, perforin and granzyme-related immune gene response is critical factor for inhibition of RBIV replication.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
13
|
Jung MH, Jung SJ. Protective immunity against rock bream iridovirus (RBIV) infection and TLR3-mediated type I interferon signaling pathway in rock bream (Oplegnathus fasciatus) following poly (I:C) administration. FISH & SHELLFISH IMMUNOLOGY 2017; 67:293-301. [PMID: 28602740 DOI: 10.1016/j.fsi.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, we evaluated the potential of poly (I:C) to induce antiviral status for protecting rock bream from RBIV infection. Rock bream injected with poly (I:C) at 2 days before infection (1.1 × 104) at 20 °C had significantly higher protection with RPS 13.4% and 33.4% at 100 and 200 μg/fish, respectively, through 100 days post infection (dpi). The addition of boost immunization with poly (I:C) at before/post infection at 20 °C clearly enhanced the level of protection showing 33.4% and 60.0% at 100 and 200 μg/fish, respectively. To investigate the development of a protective immune response, rock bream were re-infected with RBIV (1.1 × 107) at 200 dpi. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. Poly (I:C) induced TLR3 and Mx responses were observed at several sampling time points in the spleen, kidney and blood. Moreover, significantly high expression levels of IRF3 (2.9- and 3.1-fold at 1 d and 2 days post administration (dpa), respectively), ISG15 and PKR expression (5.4- and 10.2-fold at 2 dpa, respectively) were observed in the blood, but the expression levels were low in the spleen and kidney after poly (I:C) administration. Our results showed the induction of antiviral immune responses and indicate the possibility of developing long term preventive measures against RBIV using poly (I:C).
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|
14
|
Jung MH, Lee J, Ortega-Villaizan M, Perez L, Jung SJ. Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration. Vaccine 2017; 35:3691-3699. [PMID: 28579234 DOI: 10.1016/j.vaccine.2017.05.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/27/2022]
Abstract
Rock bream iridovirus (RBIV) disease in rock bream (Oplegnathus fasciatus) remains an unsolved problem in Korea aquaculture farms. CpG ODNs are known as immunostimulant, can improve the innate immune system of fish providing resistance to diseases. In this study, we evaluated the potential of CpG ODNs to induce anti-viral status protecting rock bream from different RBIV infection conditions. We found that, when administered into rock bream, CpG ODN 1668 induces better antiviral immune responses compared to other 5 CpG ODNs (2216, 1826, 2133, 2395 and 1720). All CpG ODN 1668 administered fish (1/5µg) at 2days before infection (1.1×107) held at 26°C died even though mortality was delayed from 8days (1µg) and 4days (5µg). Similarly, CpG ODN 1668 administered (5µg) at 2days before infection (1.2×106) held at 23/20°C had 100% mortality; the mortality was delayed from 9days (23°C) and 11days (20°C). Moreover, when CpG ODN 1668 administered (1/5/10µg) at 2/4/7days before infection or virus concentration was decreased to 1.1×104 and held at 20°C had mortality rates of 20/60/30% (2days), 30/40/60% (4days) and 60/60/20% (7days), respectively, for the respective administration dose, through 100 dpi. To investigate the development of a protective immune response, survivors were re-infected with RBIV (1.1×107) at 100 and 400 dpi, respectively. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. The high survival rate of fish following re-challenge with RBIV indicates that protective immunity was established in the surviving rock bream. Our results showed the possibility of developing preventive measures against RBIV using CpG ODN 1668 by reducing RBIV replication speed (i.e. water temperature of 20°C and infection dose of 1.1×104).
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Republic of Korea
| | | | - Luis Perez
- IBMC, Miguel Hernandez University, Elche, Spain
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| |
Collapse
|