1
|
Amoah K, Cai J, Huang Y, Wang B, Shija VM, Wang Z, Jin X, Cai S, Lu Y, Jian J. Identification and characterization of four Bacillus species from the intestine of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), their antagonistic role on common pathogenic bacteria, and effects on intestinal health. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109795. [PMID: 39069109 DOI: 10.1016/j.fsi.2024.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
As an alternative to the criticized antibiotics, probiotics have been adopted for their eco-friendly nature and ability to enhance host growth and immunity. Nevertheless, reports suggest ineffectiveness in commercially available probiotics since most are from non-fish sources; thus, this study was envisaged to isolate and characterize new Bacillus spp. from the gut of hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) which could serve as potential probiotics. The isolation and characterization were performed based on their morphological and biochemical properties, and 16S rRNA sequencing homology analysis. A subsequent 30-day in vivo biosafety feeding trial was conducted to ascertain isolates' non-pathogenicity, as well as their effects on fish growth, and intestinal mucosal microvilli via scanning electron microscopy (SEM) analysis. Four Bacillus spp. strains, namely, B. velezensis strain PGSAK01 (accession number OQ726606), B. stercoris strain PGSAK05 (accession number OQ726607), B. velezensis strain PGSAK17 (accession number OQ726601), and B. subtilis strain PGSAK19 (accession number OQ726605), were identified and characterized in the current study. The strains showed promising probiotic properties such higher adhesion capability, higher thermotolerance, displaying higher survivability to 0.5 % bile, lower pH tolerance, γ-haemolytic activity, and multispecies characteristics. Among the 24 antibiotics tested, while all isolates showed susceptibility to 21, the PGSAK01 strain showed resistance to furazolidone antibiotics. None of the isolates showed possession of i) virulence factor genes encoding enterotoxigenic (hblA, hblC, hblD, nheA, nheB, and entFM) and emetic (cereulide synthetase gene, ces) genes, and ii) streptomycin resistance gene (vat c), ampicillin-resistant genes (mecA and bla), and vancomycin-resistant gene (van B). Nevertheless, the PGSAK01 and PGSAK17 strains showed possession of tek K, cat, and ant(4')-Ia (adenylyltransferase) (except the PGSAK01) resistant genes. All isolates displayed better antimicrobial effects against pathogenic bacteria Streptococcus agalactiae, S. iniae, Vibrio harveyi, and V. alginolyticus. The in vivo biosafety trial involved hybrid grouper fish being grouped into five (average weight 32 ± 0.94 g), namely, the group fed the basal diet void of isolate's supplementation (control), and the remaining four groups fed the basal diet with 1 × 108 CFU/g diet of individual strain PGSAK01, PGSAK05, PGSAK17, and PGSAK19 supplementation. At the end of the study, a significantly higher WGR, K (except the PGSAK01 group), VSI; lysozyme (except PGSAK01 group), total antioxidant activity, alkaline phosphatase, superoxide dismutase enzyme activities; highly dense intestinal mucosal villi (based on the scanning electron microscopy analysis); and significantly lower malondialdehyde levels were witnessed in the isolated treated groups compared to the control, supporting the results obtained in the auto-aggregation and cell-surface hydrophobicity test. This work's results have provided thought-provoking targets; thus, studies involving extensive genome sequencing and functional annotation analysis will be explored to offer unfathomable insights into their mechanisms of action and potential health benefits, further establishing the four Bacillus strains' (PGSAK01, PGSAK05, PGSAK17, and PGSAK19) potential role in probiotic fields and functional foods.
Collapse
Affiliation(s)
- Kwaku Amoah
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Vicent Michael Shija
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Xiao Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Shuanghu Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Jichang Jian
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524000, China; Guangdong Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| |
Collapse
|
2
|
Kuebutornye FKA, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME. In vitro Assessment of the Probiotic Characteristics of Three Bacillus Species from the Gut of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 2021; 12:412-424. [PMID: 31243734 DOI: 10.1007/s12602-019-09562-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Probiotics used in aquaculture are mostly from non-fish sources, as a result ineffective in eliciting the desired effects in aquatic animals. In this study, three Bacillus species were isolated from the digestive tract of freshwater fish Oreochromis niloticus and characterised based on their morphological, biochemical and evolutionary relationships. Their probiotic potentials were evaluated based on their ability to tolerate low pH, bile salt concentration, high temperatures, adhesion ability (auto-aggregation and hydrophobicity), haemolytic activity and antimicrobial activity including biosafety assay. Three Bacillus strains identified as Bacillus velezensis TPS3N (MK130897), Bacillus subtilis TPS4 (MK130899) and Bacillus amyloliquefaciens TPS17 (MK130898) were designated as TPS3N, TPS4 and TPS17, respectively. TPS3N and TPS17 were α-haemolytic, while TPS4 was γ-haemolytic. The three isolates had higher viability ability after exposure to higher temperatures (80 °C, 90 °C and 100 °C) and were resistant to low pH (1) and bile salt concentration (0.5%) as well as high cell surface hydrophobicity and auto-aggregation. The three isolates were compatible with one another and thus can be used in consortia. These strains were susceptible to gentamicin, cephalexin, ampicillin, ceftriaxone, kanamycin, amikacin, penicillin, cefoperazone, chloramphenicol, erythromycin, tetracycline, doxycycline, ciprofloxacin, clindamycin (except TPS4) and furazolidone (except TPS17). The antimicrobial assessment showed that among the three isolates, TPS3N and TPS17 exhibited good antimicrobial activity against the three fish pathogens (Streptococcus agalactiae, Aeromonas hydrophila, Vibrio harveyi), while TPS4 was effective against Streptococcus agalactiae only. The results of this work suggest that Bacillus strains TPS3N, TPS4 and TPS17 could be considered as potential probiotics in tilapia aquaculture.
Collapse
Affiliation(s)
- Felix K A Kuebutornye
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Emmanuel Delwin Abarike
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
- Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yuan Li
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Michael Essien Sakyi
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| |
Collapse
|
3
|
Amoah K, Dong XH, Tan BP, Zhang S, Kuebutornye FKA, Chi SY, Yang QH, Liu HY, Zhang HT, Yang YZ. In vitro Assessment of the Safety and Potential Probiotic Characteristics of Three Bacillus Strains Isolated From the Intestine of Hybrid Grouper ( Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Front Vet Sci 2021; 8:675962. [PMID: 34124228 PMCID: PMC8193502 DOI: 10.3389/fvets.2021.675962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Probiotics serving as an alternative to the criticized antibiotics mainly focus on improving animal's growth and health. After realizing the dangers posed by diseases that have led to lots of economic losses, aquaculture scientists have sought the usage of probiotics. However, most probiotics are ineffective in eliciting aquatic animals' preferred effects, since they are from non-fish sources. Again, there are even a few marine aquatic probiotics. Given this, a study was conducted to investigate the probiotic potential of the bacteria species isolated from the digestive tract of hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Based on the morphological, biochemical, 16S rRNA sequencing analysis and evolutionary relationships, the isolated species were identified as Bacillus tequilensis GPSAK2 (MW548630), Bacillus velezensis GPSAK4 (MW548635), and Bacillus subtilis GPSAK9 (MW548634), which were designated as GPSAK2, GPSAK4, and GPSAK9 strains, respectively. Their probiotic potentials including their ability to tolerate high bile salt concentration, low pH, high temperatures, adhesion ability (auto-aggregation and cell-surface hydrophobicity), antimicrobial activity and biosafety test, compatibility test, hemolytic activity, and antibiotic susceptibility test were evaluated. While GPSAK2 and GPSAK9 strains were γ-hemolytic, that of GPSAK4 was α-hemolytic. All the isolates were resistant to low pH (1) and higher bile salt concentration (0.5%), showed higher viability ability after higher temperature exposure (80, 90, and 100°C), as well as higher cell-surface percentage hydrophobicity and auto-aggregation. All isolates exhibited positive compatibility with each other, signifying their ability to be used as multispecies. The three strains were susceptible to ampicillin (except GPSAK9, which was resistant), penicillin, kanamycin, ceftriaxone, chloramphenicol, erythromycin, clindamycin, furazolidone (except GPSAK2 and GPSAK9, which were moderately susceptible and resistant, respectively), polymyxin B, vancomycin (except GPSAK9, which was resistant), sulfamethoxazole (except GPSAK9, which was moderately susceptible), amikacin, minocycline, ofloxacin, norfloxacin, doxycycline, neomycin, gentamicin, tetracycline, carbenicillin, midecamycin (except GPSAK9, which was moderately susceptible), ciprofloxacin, piperacillin, and cefoperazone. All isolates demonstrated good antimicrobial activity against four pathogens, viz. Streptococcus agalactiae, Streptococcus iniae, Vibrio harveyi, and Vibrio alginolyticus. The results collectively suggest that Bacillus strains GPSAK2, GPSAK4, and GPSAK9 could serve as potential probiotic candidates that can be used to improve the growth and health status of aquatic animals, especially grouper.
Collapse
Affiliation(s)
- Kwaku Amoah
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Felix K A Kuebutornye
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, China
| | - Shu-Yan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hong-Yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hai-Tao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Yuan-Zhi Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
4
|
Deng Y, Xu L, Liu S, Wang Q, Guo Z, Chen C, Feng J. What drives changes in the virulence and antibiotic resistance of Vibrio harveyi in the South China Sea? JOURNAL OF FISH DISEASES 2020; 43:853-862. [PMID: 32557678 DOI: 10.1111/jfd.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
To understand the driving environmental factors in changes of bacterial virulence and antibiotic resistance, we determined the prevalence, antibiotic resistance and antibiotic resistance and virulence genes of Vibrio harveyi isolated from diseased marine fish in south coastal China. We isolated 2, 52 and 53 V. harveyi strains from Fujian, Hainan and Guangdong, respectively, and identified them by multilocus sequence analysis of 16S rRNA-toxRVh -rctB. Nine typical virulence genes were represented at a higher average in Hainan (7.39 ± 0.24) than in Guangdong (6.91 ± 0.28). Five atypical virulence genes were detected in some isolates. In particular, flaC and vvh were detected in more than 60% of isolates. Their average number was significantly higher in Hainan (2.30 ± 0.20) than in Guangdong (1.70 ± 0.10). Multidrug resistance was widespread with an average resistance to 4.57 ± 0.18 of 15 antibiotics. Both the average number of antibiotic resistance and antibiotic resistance genes were higher in Hainan (5.25 ± 0.27 and 1.11 ± 0.15, respectively) than in Guangdong (3.87 ± 0.21 and 0.75 ± 0.10, respectively). This study demonstrated that there were more virulence genes and greater drug resistance in Hainan than in Guangdong, suggesting that warmer temperature and antibiotics pollutants probably enhance antibiotic resistance and bacterial infection.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| |
Collapse
|
5
|
Regev Y, Davidovich N, Berzak R, Lau SCK, Scheinin AP, Tchernov D, Morick D. Molecular Identification and Characterization of Vibrio Species and Mycobacterium Species in Wild and Cultured Marine Fish from the Eastern Mediterranean Sea. Microorganisms 2020; 8:E863. [PMID: 32517374 PMCID: PMC7356242 DOI: 10.3390/microorganisms8060863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/03/2022] Open
Abstract
In contrast to numerous documented pathogens and infectious diseases of aquaculture, there is a lack of baseline data and information regarding pathogenic agents' prevalence in wild marine fish populations. This study focused on two common fish pathogenic microorganisms, namely Mycobacterium species and Vibrio species, both of which are known to be major causes of fish loss, occasionally to the extent of being a limiting factor in fish production. Both microorganisms are known as zoonotic agents. In total, 210 wild marine indigenous and Lessepsian fish from four different species from the eastern Mediterranean Sea were sampled and tested for Vibrio species and Mycobacterium species during a two-year period (2016-2017). Using PCR with 16S rRNA primers, we detected different strain variations of Mycobacterium species and Vibrio species and, based on the sequencing results, the overall prevalence for Vibrio species in wild fish in 2016 was significantly higher compared to 2017. No significant difference was detected for Mycobacterium species prevalence in wild fish between 2016 and 2017. In addition, 72 gilthead seabream (Sparus aurata) from an Israeli offshore marine farm were also examined during the two-year period (2017-2018). The results suggest that Mycobacterium species prevalence was significantly higher in 2018, while in 2017 there was no positive results for Mycobacterium species. In addition, there was no significant difference between both years in regard to the prevalence of Vibrio species for maricultured fish. These results highlight the necessity of continuous molecular monitoring in order to evaluate the prevalence of pathogenic microorganisms in both wild and cultured fish populations.
Collapse
Affiliation(s)
- Yael Regev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | | | - Ran Berzak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Stanley C. K. Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| | - Aviad P. Scheinin
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Dan Tchernov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Danny Morick
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (Y.R.); (R.B.); (A.P.S.); (D.T.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|