1
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou SE, Broglia A, Karagianni AE, Papanikolaou A, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU)2016/429): Infection with salmonid alphavirus (SAV). EFSA J 2023; 21:e08327. [PMID: 37908450 PMCID: PMC10613945 DOI: 10.2903/j.efsa.2023.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Infection with salmonid alphavirus (SAV) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as laid out in Article 9 and Article 8 for listing animal species related to infection with SAV. The assessment was performed following the ad hoc method on data collection and assessment developed by AHAW Panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment, it was uncertain whether infection with salmonid alphavirus can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-80% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that infection with salmonid alphavirus does not meet the criteria in Section 1 (Category A; 5-10% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 50-90%, probability of meeting the criteria). The animal species to be listed for infection with SAV according to Article 8 criteria are provided.
Collapse
|
2
|
Scholz F, Vendramin N, Olesen NJ, Cuenca A, Moesgaard Iburg T, Mirimin L, O'Connor I, Ruane NM, Rodger HD, MacCarthy E. Experimental infection trials with European North Atlantic ranavirus (Iridoviridae) isolated from lumpfish (Cyclopterus lumpus, L.). JOURNAL OF FISH DISEASES 2022; 45:1745-1756. [PMID: 35989490 DOI: 10.1111/jfd.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
European North Atlantic ranavirus (ENARV, Iridoviridae), is a ranavirus species recently isolated from lumpfish (Cyclopterus lumpus, L.), which are used as cleaner fish in Atlantic salmon (Salmo salar) farming in Northern Europe. This study aimed to investigate (1) the virulence of ENARV isolates from Ireland, Iceland and the Faroe Islands to lumpfish; (2) horizontal transmission between lumpfish; and (3) virulence to Atlantic salmon parr. Lumpfish were challenged in a cohabitation model using intraperitoneally (IP) injected shedders, and naïve cohabitants. IP challenge with isolates from Iceland (1.9 × 107 TCID50 ml-1 ) and the Faroe Islands (5.9 × 107 TCID50 ml-1 ) reduced survival in lumpfish, associated with consistent pathological changes. IP challenge with the Irish strain (8.6 × 105 TCID50 ml-1 ) did not significantly reduce survival in lumpfish, but the lower challenge titre complicated interpretation. Horizontal transmission occurred in all strains tested, but no clinical impact was demonstrated in cohabitants. Salmon parr were challenged by IP injection with the Irish isolate, no virulence or virus replication were demonstrated. A ranavirus qPCR assay, previously validated for fish ranaviruses, was first used to detect ENARV in tissues of both in lumpfish and Atlantic salmon. This study provides the first data on the assessment of virulence of ENARV isolates to lumpfish and salmon, guidelines for the diagnosis of ENARV infection, and poses a basis for further investigations into virulence markers.
Collapse
Affiliation(s)
- Felix Scholz
- PHARMAQ Analytiq, Oranmore, Ireland
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Niccolò Vendramin
- DTU Aqua, National Institute of Aquatic Resources, Copenhagen, Denmark
| | | | - Argelia Cuenca
- DTU Aqua, National Institute of Aquatic Resources, Copenhagen, Denmark
| | | | - Luca Mirimin
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| | | | | | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland
| |
Collapse
|
3
|
Emergence of Salmonid Alphavirus Genotype 2 in Norway-Molecular Characterization of Viral Strains Circulating in Norway and Scotland. Viruses 2021; 13:v13081556. [PMID: 34452421 PMCID: PMC8402823 DOI: 10.3390/v13081556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreas disease (PD) and sleeping disease (SD), caused by an alphavirus, are endemic in European salmonid aquaculture, causing significant mortality, reduced growth and poor flesh quality. In 2010, a new variant of salmonid alphavirus emerged in Norway, marine salmonid alphavirus genotype 2 (SAV2). As this genotype is highly prevalent in Scotland, transmission through well boat traffic was hypothesized as one possible source of infection. In this study, we performed full-length genome sequencing of SAV2 sampled between 2006 and 2012 in Norway and Scotland, and present the first comprehensive full-length characterization of Norwegian marine SAV2 strains. We analyze their relationship with selected Scottish SAV2 strains and explore the genetic diversity of SAV. Our results show that all Norwegian marine SAV2 share a recent last common ancestor with marine SAV2 circulating in Scotland and a higher level of genomic diversity among the Scottish marine SAV2 strains compared to strains from Norway. These findings support the hypothesis of a single introduction of SAV2 to Norway sometime from 2006-2010, followed by horizontal spread along the coast.
Collapse
|
4
|
Fjelldal PG, Madaro A, Hvas M, Stien LH, Oppedal F, Fraser TW. Skeletal deformities in wild and farmed cleaner fish species used in Atlantic salmon Salmo salar aquaculture. JOURNAL OF FISH BIOLOGY 2021; 98:1049-1058. [PMID: 32243571 DOI: 10.1111/jfb.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
As a first attempt to assess bone health in cleaner fish production, wild and cultured ballan wrasse Labrus bergylta and lumpfish Cyclopterus lumpus were examined by radiology. In C. lumpus, wild fish (57%) had more vertebra deformities (≥1 deformed vertebrae) than cultured fish (2-16%). One wild C. lumpus had lordosis and another was missing the tail fin. In L. bergylta, wild fish (11%) had fewer vertebra deformities than cultured individuals (78-91%). Among the cultured L. bergylta, 17-53% of the fish had severe vertebra deformities (≥6 deformed vertebrae) with two predominate sites of location, one between vertebra 4 and 10 (S1) in the trunk, and one between 19 and 26 (S2) in the tail. Fusions dominated S1, while compressions dominated S2. Although wild L. bergylta had a low vertebra deformity level, 83% had calluses and 14% had fractures in haemal/neural spines and/or ribs. The site-specific appearance and pathology of fracture and callus in wild L. bergylta suggests these are induced by chronic mechanical stress, and a possible pathogenesis for fish hyperostosis is presented based on this notion. In conclusion, good bone health was documented in cultured C. lumpus, but cultured L. bergylta suffered poor bone health. How this affects survival, growth, swimming abilities and welfare in cultured wrasse should be further investigated. SIGNIFICANCE STATEMENT: Skeletal deformities were studied in ballan wrasse and lumpfish of both wild and cultured origin for the first time to identify potential welfare issues when deploying them as cleaner fish in salmon sea cages. While cultured lumpfish showed good bone health, cultured wrasse had a high occurrence of vertebra deformities, which is expected to impact lice eating efficiency and animal welfare negatively. These deformities are most likely induced early in development.
Collapse
Affiliation(s)
| | | | - Malthe Hvas
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Lars Helge Stien
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Frode Oppedal
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Thomas Wk Fraser
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| |
Collapse
|
5
|
Tighe AJ, Gallagher MD, Carlsson J, Matejusova I, Swords F, Macqueen DJ, Ruane NM. Nanopore whole genome sequencing and partitioned phylogenetic analysis supports a new salmonid alphavirus genotype (SAV7). DISEASES OF AQUATIC ORGANISMS 2020; 142:203-211. [PMID: 33331288 DOI: 10.3354/dao03546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.
Collapse
Affiliation(s)
- Andrew J Tighe
- Fish Health Unit, Marine Institute, Oranmore H91 R673, Ireland
| | | | | | | | | | | | | |
Collapse
|
6
|
Gallagher MD, Karlsen M, Petterson E, Haugland Ø, Matejusova I, Macqueen DJ. Genome Sequencing of SAV3 Reveals Repeated Seeding Events of Viral Strains in Norwegian Aquaculture. Front Microbiol 2020; 11:740. [PMID: 32390982 PMCID: PMC7193772 DOI: 10.3389/fmicb.2020.00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six subtypes, with Norway having ongoing epidemics of SAV subtypes 2 and 3. These two viral subtypes are present in largely distinct geographic regions of Norway, with SAV2 present in Trondelag, SAV3 in Rogaland, Sogn og Fjordane, and Hordaland, and Møre og Romsdal having outbreaks of both subtypes. To determine likely transmission routes of Norwegian SAV an established Nanopore amplicon sequencing approach was used in the current study. After confirming the accuracy of this approach for distinguishing subtype level co-infections of SAV2 and SAV3, a hypothetical possibility in regions of neighboring epidemics, twenty-four SAV3 genomes were sequenced to characterize the current genetic diversity of SAV3 in Norwegian aquaculture. Sequencing was performed on naturally infected heart tissues originating from a range of geographic locations sampled between 2016 and 2019. Phylogenetic analyses revealed that the currently active SAV3 strains sampled comprise several distinct lineages sharing an ancestor that existed ∼15 years ago (95% HPD, 12.51-17.7 years) and likely in Hordaland. At least five of these lineages have not shared a common ancestor for 7.85 years (95% HPD, 5.39-10.96 years) or more. Furthermore, the ancestor of the strains that were sampled outside of Hordaland (Sogn of Fjordane and Rogaland) existed less than 8 years ago, indicating a lack of long-term viral reservoirs in these counties. This evident lack of geographically distinct subclades is compatible with a source-sink transmission dynamic explaining the long-term movements of SAV around Norway. Such anthropogenic transport of the virus indicates that at least for sink counties, biosecurity strategies might be effective in mitigating the ongoing SAV epidemic. Finally, genomic analyses of SAV sequences were performed, offering novel insights into the prevalence of SAV genomes containing defective deletions. Overall, this study improves our understanding of the recent transmission dynamics and biology of the SAV epidemic affecting Norwegian aquaculture.
Collapse
Affiliation(s)
- Michael D. Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Iveta Matejusova
- Marine Laboratory, Marine Scotland Science, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|