1
|
Zeng S, Huang Z, Kriengkrai S, Zhou R, Yuan D, Tuấn NV, Zhu Z, Zheng L, Hou Q, Li X, Chen Q, Zhang L, Hou D, Deng Z, Bao S, Wang W, Khoruamkid S, Goh SL, Weng S, He J. Warming-driven migration of enterotypes mediates host health and disease statuses in ectotherm Litopenaeus vannamei. Commun Biol 2025; 8:126. [PMID: 39865129 PMCID: PMC11770195 DOI: 10.1038/s42003-025-07558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood. Herein, a global shrimp IM catalogue was conducted via 1,369 shrimp IM data from nine countries, including 918 samples from previously published data and 451 generated in the study. Shrimp IMs were stratified into three enterotypes with distinctive compositions and functions, dominated by Vibrio, Shewanella and Candidatus Bacilloplasma, which showed an obvious distribution bias between enterotypes and diseases. The ratio of Vibrio and Candidatus Bacilloplasma was a crucial indicator for shrimp health. Moreover, temperature was the most driving factor for microbial composition, which potentially led to the migration of enterotypes, and high probability of white feces syndrome and low risk of hepatopancreas necrosis syndrome. Collectively, the warming-driven enterotypes mediated shrimp health, which exemplified the causal relationship between temperature rising and ectothermic animals' health. These findings enlarged the cognition of shrimp health culture management from a microecological perspective, and alerted the inevitable challenge of global warming to ectothermic animals.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China.
| | | | - Renjun Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Derun Yuan
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Nguyễn Văn Tuấn
- Fisheries and Technical, Economic College, Bac Ninh, Vietnam
| | - Zhiming Zhu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Luwei Zheng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lingyu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Soo Loon Goh
- Goh Siong Tee Marine Product Sdn.Bhd, Penang, Malaysia
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Maskur M, Prihanto AA, Firdaus M, Kobun R, Nurdiani R. Review of the potential of bioactive compounds in seaweed to reduce histamine formation in fish and fish products. Ital J Food Saf 2025; 14:12994. [PMID: 39882994 PMCID: PMC11934318 DOI: 10.4081/ijfs.2025.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
The formation of histamine in food is influenced by temperature, and histamine growth can be inhibited by maintaining a cold chain. However, simply relying on temperature control is insufficient, as certain bacteria can produce the enzyme histidine decarboxylase even at temperatures below 5°C. To address this issue, various methods, such as modified atmosphere packaging, high hydrostatic pressure, and irradiation, have been developed to control histamine in fishery products. However, these methods often require significant investments. Therefore, there is a need for a cost-effective solution to overcome this problem. This review explores a cost-effective solution through the utilization of bioactive compounds derived from underexplored seaweeds. Seaweed bioactive compounds, either in their pure form or as extracts, offer a promising alternative method to regulate histamine generation in fishery products due to their antibacterial activity, and this review provides comprehensive insights into the potential of different seaweed-derived bioactive compounds as inhibitors of histamine production, detailing their diverse applications in fishery products. It also explores the mechanism by which bioactive compounds prevent histamine formation by bacteria, focusing on the potential of seaweed bioactive compounds to inhibit bacterial histidine decarboxylase. Future trends in the inhibition of histidine decarboxylation are also discussed. The bioactive compounds considered, such as flavonoids, alkaloids, terpenes, and phenolic acids, exhibit their antibacterial effects through various mechanisms, including the inhibition of DNA and RNA synthesis, disruption of cytoplasmic and cell membranes, and inhibition of enzymes by reacting with sulfhydryl groups on proteins. In conclusion, the integration of underexplored seaweeds in fishery product preservation represents a promising and innovative approach for future food safety and sustainability.
Collapse
Affiliation(s)
- Muhammad Maskur
- Doctoral Program, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java; Polytechnic of Marine and Fisheries Bone, Bone, South Sulawesi.
| | - Asep Awaludin Prihanto
- Department of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Muhamad Firdaus
- Department of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Rovina Kobun
- Food Security Research Lab, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.
| | - Rahmi Nurdiani
- Department of Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| |
Collapse
|
3
|
Eissa ESH, Hendam BM, Dighiesh HS, Abd Elnabi HE, Sakr SES, Kabary H, Abdel Rahman AN, Eissa MEH, Ahmed NH. The benefits of astaxanthin-rich microalgal powder on growth, health, and disease resistance against Fusarium solani in Pacific white shrimp. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110059. [PMID: 39613170 DOI: 10.1016/j.fsi.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In shrimp aquaculture, enhancing health and disease resistance is crucial for sustainable production. This study investigates the pioneering effects of astaxanthin-enriched microalgal powder from Haematococcus pluvialis (HP) on Pacific white shrimp (Litopenaeus vannamei), focusing on growth efficiency, body composition, immune and antioxidant responses, intestinal health, histopathology, gene expression, and resistance against Fusarium solani. Shrimp (initial weight 5.27 ± 0.12 g) were separated into four groups and fed diets supplemented with HP at concentrations of 0, 0.5, 1, and 1.5 g/kg feed (control, HP 0.5, HP1, and HP1.5), respectively, for 8 weeks. The outcomes revealed marked improvements in growth, feed utilization, and survival rate of the HP-fed groups. The improvement was dose-dependent. The protein and ash content increased and the lipid decreased with HP supplementation. A dose-dependent augmented antioxidant-immune response was obvious in the HP-fed groups. This is proven by the high level of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, total hemocyte count, respiratory burst, lysozyme (LYZ), phenoloxidase (PO), and phagocytic activity with up-regulation of proPO, LYZ, SOD, and CAT genes. Dietary HP influenced the intestinal bacterial community, where it reduced total aerobic and fecal bacteria and rose total probiotic bacteria and Clostridium counts. Histological investigation showed increased secretory vesicles within B-cells in the hepato-pancreas and larger muscle fibers in the HP-fed groups. Additionally, dietary HP notably lowered mortality rates upon the F. solani challenge, with a reduction from 65.00 % in the control to 45.00 %, 35.00%, and 35.00 % in the HP 0.5, HP1, and HP1.5 groups, respectively. Our study recommends adopting dietary HP at the optimal dose of 1.2 g/kg diet relying on the broken line regression model. This study provides valuable insights into the potential of HP as a dietary supplement to improve the health, growth, and disease resistance of L. vannamei, marking a significant advancement in shrimp aquaculture.
Collapse
Affiliation(s)
- El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, El-Arish, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hagar Sedeek Dighiesh
- Department of Aquaculture, Faculty of Fish Resources, Suez University, P.O.Box:43512, Suez, Egypt
| | - Heba E Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Salah El-Sayed Sakr
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hoda Kabary
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia 41522, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Moaheda E H Eissa
- Department of Biotechnology, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Norhan H Ahmed
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Zhu Z, Ma X, Liu X, Zheng L, Zhang L, Dai X, Li H, Zhang Z, Wang B, Huang X, Ge J, Ren Q. CBS/CSE mediated H 2S production induced AMPs expression through Toll pathway in crabs with black gill syndrome. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109965. [PMID: 39401741 DOI: 10.1016/j.fsi.2024.109965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
The occurrence of black gill syndrome (BGS) is a serious threat to the healthy culture of Eriocheir sinensis. Studying the innate immune ability of E. sinensis with BGS can help develop new strategies for disease prevention and treatment. Antimicrobial peptides (AMPs) have crucial roles in crustacean humoral immunity. In this study, we found that the expression levels of two antilipopolysaccharide factor (EsALF7 and EsALF-L), one Toll receptor 3 (EsToll3), and one Pelle kinase (EsPelle) were upregulated in E. sinensis with BGS. Moreover, ALFs expressions in E. sinensis with BGS were positively regulated by EsToll3 and EsPelle. The content of hydrogen sulfide (H2S) in the gills of E. sinensis with BGS was increased. Further studies showed that the expressions of cystathionine β-synthase (EsCBS) and cystathionine γ-lyase (EsCSE) in the gills of E. sinensis with BGS were upregulated, which positively regulate the production of H2S. Whether there was a correlation between the upregulation of ALFs expression and changes in H2S content? Further studies showed that 1) the expressions of EsToll3, EsPelle, EsALF7, and EsALF-L in the gills of E. sinensis were upregulated under H2S exposure and 2) the knockdown of EsCBS and EsCSE in E. sinensis reduced the transcriptions of EsToll3, EsPelle, EsALF7, and EsALF-L. To sum up, these findings suggest that upregulation of H2S content induced by CBS/CSE promotes the expression of ALFs through the Toll pathway in E. sinensis suffering from BGS.
Collapse
Affiliation(s)
- Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xingkong Ma
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Zhaoqian Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Bingyan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu Province, China.
| |
Collapse
|
5
|
Weawsawang W, Homsombat T, Nuanmanee S, Saleetid N, Thawonsuwan J, Pumchan A, Hirono I, Kondo H, Unajak S. Characterization of Photobacterium damselae subsp. damselae isolated from diseased Asian seabass (Lates calcarifer) and the preliminary development of a formalin-killed cell vaccine. JOURNAL OF FISH DISEASES 2024; 47:e13987. [PMID: 39072799 DOI: 10.1111/jfd.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
Asian seabass (Lates calcarifer) is an economically important fish species that is widely cultivated in Thailand. However, aquaculture of Asian seabass is limited by infectious diseases. One of the most serious diseases is photobacteriosis, caused by Photobacterium damselae. Vaccination is recognized as an efficient disease prevention and pathogen control method for strengthening the aquaculture industry. To promote vaccine development, the characterization of pathogenic bacteria and their pathogenesis is required. In this study, isolates of P. damselae were obtained from commercial aquaculture farms in Thailand during 2019-2021. Analyses of 16S rRNA and the urease subunit alpha genes identified the isolates as P. damselae subsp. damselae (Phdd). Antibiotic susceptibility analyses showed that all Phdd isolates were resistant to amoxicillin (10 μg). Haemolysis and phospholipase activities were used to categorize P. damselae into three groups based on their biological activities. The pathogenicity of four candidates (SK136, PD001, PD002 and T11L) was tested in Asian seabass. Isolate SK136 showed the highest virulence, with a lethal dose (LD50) of 1.47 × 105 CFU/fish, whereas isolate PD001 did not show any virulence. Genotypic characterization, based on multi-locus sequence typing analysis, demonstrated that all candidates were novel strains with new sequence types (64, 65, 66 and 67). Preliminary vaccination using formalin-killed cells (FKCs) protected Asian seabass from artificial challenges. Taken together, these results provide fundamental knowledge for vaccine development against Phdd infection in Asian seabass.
Collapse
Affiliation(s)
- Warisara Weawsawang
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| | - Theeyathart Homsombat
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Saransiri Nuanmanee
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Nattakan Saleetid
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Jumroensri Thawonsuwan
- Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Japan
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Kasetsart Vaccines and Biologics Innovation Centre, Bangkok, Thailand
| |
Collapse
|
6
|
Battistini R, Masotti C, Giorda F, Grattarola C, Peletto S, Testori C, Zoppi S, Berio E, Crescio MI, Pussini N, Serracca L, Casalone C. Photobacterium damselae subsp. damselae in Stranded Cetaceans: A 6-Year Monitoring of the Ligurian Sea in Italy. Animals (Basel) 2024; 14:2825. [PMID: 39409774 PMCID: PMC11475299 DOI: 10.3390/ani14192825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Photobacterium damselae subsp. damselae (Pdd) is an increasingly common bacterium in post-mortem diagnostics of beached marine mammals, but little is known about its precise etiological responsibility. To estimate the prevalence of Pdd in stranded cetaceans from 2017 to 2022 on the Ligurian coast (Pelagos Sanctuary), we tested tissues from 53 stranded individuals belonging to four cetacean species. DNA extracts from cetacean tissue were screened using a polymerase chain reaction (PCR) assay targeting the Pdd ureC gene. Positive samples were screened by PCR for dly, hlyApl and hlyAch hemolysin genes, which were confirmed by sequencing. Twenty-two out of 53 (41.5%) cetaceans analyzed by PCR were confirmed for Pdd DNA in at least one tissue among those analyzed. Five of these cetaceans were positive for at least one of the hemolysin genes tested. In all Pdd-positive cetaceans, other pathogens that were considered responsible for the causa mortis of the animals were also found. The results provide new information on the spread of Pdd in cetaceans and support the thesis that Pdd might be an opportunistic agent that could contribute to worsening health conditions in subjects already compromised by other pathogens. However, further studies are needed to investigate and deepen this hypothesis.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Enrica Berio
- ASL 1 Sistema Sanitario Regione Liguria, Via Aurelia Ponente 97, 18038 Sanremo, Italy;
| | - Maria Ines Crescio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Nicola Pussini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (R.B.); (C.M.); (F.G.); (C.G.); (S.P.); (C.T.); (S.Z.); (M.I.C.); (N.P.); (C.C.)
| |
Collapse
|
7
|
Qian Z, Hou D, Gao S, Wang X, Yu J, Dong J, Sun C. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis. CHEMOSPHERE 2024; 361:142578. [PMID: 38857631 DOI: 10.1016/j.chemosphere.2024.142578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.
Collapse
Affiliation(s)
- Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, 550025, Guizhou, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
8
|
Touraki M, Chanou A, Mavridou V, Tsertseli V, Tsiridi M, Panteris E. Administration of probiotics affects Artemia franciscana metanauplii intestinal ultrastructure and offers resistance against a Photobacterium damselae ssp . piscicida induced oxidative stress response. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100113. [PMID: 37671319 PMCID: PMC10475491 DOI: 10.1016/j.fsirep.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The effects of Photobacterium damselae ssp. piscicida (Phdp) on immune responses and intestinal ultrastructure of Artemia franciscana following infection and their amelioration by the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against Artemia were confirmed with an LC50 of 105 CFU mL-1. Phdp administration to Artemia at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (P < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance Artemia immune responses to protect it against the Phdp induced damage.
Collapse
Affiliation(s)
- Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Anna Chanou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Mavridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Tsertseli
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Maria Tsiridi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
9
|
Nevado DL, Delos Santos S, Bastian G, Deyta J, Managuelod EJ, Fortaleza JA, De Jesus R. Detection, Identification, and Inactivation of Histamine-forming Bacteria in Seafood: A Mini-review. J Food Prot 2023; 86:100049. [PMID: 36916556 DOI: 10.1016/j.jfp.2023.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Seafood is one of the essential sources of nutrients for the human diet. However, they can be subject to contamination and can cause foodborne illnesses, including scombroid fish poisoning caused by histamine. Many microorganisms can produce enzymes that eventually decompose endogenous histidine to histamine in postmortem fish muscles and tissues. One of these is histamine-forming bacteria (HFB), primarily found in the gills, gut, and skin of fishes. Previous studies linked a plethora of Gram-negative HFB including Morganella spp. and Photobacterium spp. to scombroid fish poisoning from many types of seafood, especially the Scombridae family. These bacteria possess the hdc gene to produce histidine decarboxylase enzyme. It was reported that Gram-negative HFB produced 6345 ppm in tuna and 1223 ppm in Spanish mackerel. Interestingly, Gram-positive HFB have been isolated in the seafood samples with lower histamine levels. It suggests that Gram-negative HFB are the major contributor to the accumulation of histamine in seafood. Several analytical methods are available to detect and identify HFB and their histamine metabolites from seafood substrates. Rapid test kits can be used in food production settings for early detection of histamine to avoid food intoxication. Furthermore, high hydrostatic pressure and irradiation treatment could prevent the proliferation of HFB and inactivate the existing histidine decarboxylase (HDC) activity. As demonstrated in different seafood model systems, the HDC activity was deactivated at a maximum high hydrostatic pressure level of 400 MPa. The complete inactivation of HFB was achieved by gamma irradiation at a dose of 4.0 kGy. Other postharvest treatments, like enzymatic degradation and electrolyzed oxidizing water, were studied as sustainable methods for bacterial growth prevention and enzyme inactivation. However, other HFB react differently to these treatment conditions, and further studies are recommended.
Collapse
Affiliation(s)
- Daniel Lance Nevado
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Sophia Delos Santos
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Gelian Bastian
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Jimson Deyta
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - El-Jay Managuelod
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Jamil Allen Fortaleza
- Department of Biology, College of Arts and Sciences, Our Lady of Fatima University, Quezon City 1118, Philippines
| | - Rener De Jesus
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
10
|
Jatuyosporn T, Laohawutthichai P, Romo JPO, Gallardo-Becerra L, Lopez FS, Tassanakajon A, Ochoa-Leyva A, Krusong K. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon. Sci Rep 2023; 13:996. [PMID: 36653369 PMCID: PMC9849358 DOI: 10.1038/s41598-023-27906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiome plays an essential role in the immune system of invertebrates and vertebrates. Pre and pro-biotics could enhance the shrimp immune system by increasing the phenoloxidase (PO), prophenoloxidase (ProPO), and superoxide dismutase activities. During viral infection, the host immune system alteration could influence the gut microbiome composition and probably lead to other pathogenic infections. Since the JAK/STAT pathway is involved in white spot syndrome virus (WSSV) infection, we investigated the intestine immune genes of STAT-silenced shrimp. During WSSV infection, expression levels of PmVago1, PmDoral, and PmSpätzle in PmSTAT-silenced shrimp were higher than normal. In addition, the transcription levels of antimicrobial peptides, including crustinPm1, crustinPm7, and PmPEN3, were higher in WSSV-challenged PmSTAT-silenced shrimp than the WSSV-infected normal shrimp. Meanwhile, PmSTAT silencing suppressed PmProPO1, PmProPO2, and PmPPAE1 expressions during WSSV infection. The microbiota from four shrimp tested groups (control group, WSSV-infected, PmSTAT-silenced, and PmSTAT-silenced infected by WSSV) was significantly different, with decreasing richness and diversity due to WSSV infection. The relative abundance of Bacteroidetes, Actinobacteria, and Planctomycetes was reduced in WSSV-challenged shrimp. However, at the species level, P. damselae, a pathogen to human and marine animals, significantly increased in WSSV-challenged shrimp. In constrast, Shewanella algae, a shrimp probiotic, was decreased in WSSV groups. In addition, the microbiota structure between control and PmSTAT-silenced shrimp was significantly different, suggesting the importance of STAT to maintain the homeostasis interaction with the microbiota.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juan Pablo Ochoa Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Filiberto Sánchez Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Liao M, Liao X, Long X, Zhao J, He Z, Zhang J, Wu T, Sun C. Host-microbiota interactions and responses of Metapenaeus ensis infected with decapod iridescent virus 1. Front Microbiol 2023; 13:1097931. [PMID: 36713173 PMCID: PMC9880205 DOI: 10.3389/fmicb.2022.1097931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.
Collapse
Affiliation(s)
- Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuzheng Liao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jichen Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jingyue Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingfen Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China,*Correspondence: Chengbo Sun, ✉
| |
Collapse
|
12
|
Pazir MK, Pourmozaffar S, Mena IG, Shengjie R, Ahmadi A, Sharifpour I. Black gill disease in Litopenaeus vannamei made by various agents. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Gan L, Zheng J, Xu WH, Lin J, Liu J, Zhang Y, Wu Z, Lv Z, Jia Y, Guo Q, Chen S, Liu C, Defoirdt T, Qin Q, Liu Y. Deciphering the virulent Vibrio harveyi causing spoilage in muscle of aquatic crustacean Litopenaeus vannamei. Sci Rep 2022; 12:16296. [PMID: 36175476 PMCID: PMC9522882 DOI: 10.1038/s41598-022-20565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
The muscle of aquatic crustaceans is perishable and susceptible to environmental contamination. Vibrio harveyi is a widely occurring pathogen in aquatic animals. Here, bath treatment with a virulent V. harveyi strain (which was added directly in the rearing water to imitate environmental contamination) isolated from the muscle of the whiteleg shrimp, Litopenaeus vannamei, caused the muscle of Li. vannamei to display a whitish-opaque appearance due to microscopic changes including muscle lysis, muscle fiber damage and microbial colonization. When administered orally by incorporating this isolate in feed (which is an imitation of infection via natural route), rather than direct invasion followed by colonization in the muscle, this isolate indirectly stimulated severe muscle necrosis in Li. vannamei via steering the enrichment of two important (human) pathogens, V. cholerae and V. vulnificus, and one environmental bacterium Pseudomonas oleovorans, based on the meta-taxonomic analyses. In addition to the scientifically proven viral diseases, our research proved that bacterial agents are also capable of causing muscle spoilage in crustaceans via changing the microbial composition, and that the crustaceans might be exploited as the wide-spectrum sensitive bio-detector to indicate the extent of microbial contamination.
Collapse
Affiliation(s)
- Lian Gan
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Jianwei Zheng
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wei-Hua Xu
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jianhao Lin
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingshu Liu
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Zhang
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zizhan Wu
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaolin Lv
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youming Jia
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qingqi Guo
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijun Chen
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Qiwei Qin
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yiying Liu
- Guangdong-Hong Kong-Macau University Joint Laboratory of Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
14
|
He Z, Zhong Y, Liao M, Dai L, Wang Y, Zhang S, Sun C. Integrated analysis of intestinal microbiota and metabolomic reveals that decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus. Front Immunol 2022; 13:982717. [PMID: 36189245 PMCID: PMC9524744 DOI: 10.3389/fimmu.2022.982717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, with global warming and increasing marine pollution, some novel marine viruses have become widespread in the aquaculture industry, causing huge losses to the aquaculture industry. Decapod iridescent virus 1 (DIV1) is one of the newly discovered marine viruses that has been reported to be detected in a variety of farmed crustacean and wild populations. Several previous studies have found that DIV1 can induce Warburg effect-related gene expression. In this study, the effects of DIV1 infection on intestinal health of shrimp were further explored from the aspects of histological, enzymatic activities, microorganisms and metabolites using Marsupenaeus japonicus as the object of study. The results showed that obvious injury in the intestinal mucosa was observed after DIV1 infection, the oxidative and antioxidant capacity of the shrimp intestine was unbalanced, the activity of lysozyme was decreased, and the activities of digestive enzymes were disordered, and secondary bacterial infection was caused. Furthermore, the increased abundance of harmful bacteria, such as Photobacterium and Vibrio, may synergized with DIV1 to promote the Warburg effect and induce metabolic reprogramming, thereby providing material and energy for DIV1 replication. This study is the first to report the changes of intestinal microbiota and metabolites of M. japonicus under DIV1 infection, demonstrating that DIV1 can induce secondary bacterial infection and metabolic reprogramming. Several bacteria and metabolites highly associated with DIV1 infection were screened, which may be leveraged for diagnosis of pathogenic infections or incorporated as exogenous metabolites to enhance immune response.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
15
|
Taştan Y, Çağatay İT. Fusarium oxysporum causes black gill disease in narrow-clawed crayfish Pontastacus leptodactylus. DISEASES OF AQUATIC ORGANISMS 2022; 148:19-27. [PMID: 35142295 DOI: 10.3354/dao03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Morphological and molecular analyses were carried out to determine the causative agent of black gill disease in narrow-clawed crayfish Pontastacus leptodactylus specimens collected from 6 lakes (Taşkısığı, Beyşehir, Karaidemir, Karataş, Manyas, and Gölhisar) in Turkey. Fungi were isolated from the tissues of crayfish displaying putative black gill disease symptoms. Morphological evaluation was conducted, and the isolates were determined to be similar to Fusarium oxysporum. Subsequent molecular cloning of the ITS region of nrDNA by PCR confirmed species identification; DNA sequences from all 6 isolates were 99% similar to those of F. oxysporum. An experimental infection trial was conducted in triplicate using 1 of the 6 isolates to fulfill Koch's postulates. Three groups of crayfish were used: (1) wounded and contaminated (WC), (2) wounded and not contaminated (WNC), and (3) non-wounded and contaminated (NWC). On Day 3, one individual died in the WC group. Throughout the total 74 d monitoring period, no other mortality was recorded. On Day 14, all crayfish in the WC group showed blackened gills, whereas all crayfish in the NWC displayed partial blackening and all crayfish in the WNC group displayed normal gill coloration. F. oxysporum was re-isolated in pure culture from the WC and NWC groups; thus, the disease was confirmed. Our results indicated that F. oxysporum causes black gill disease in P. leptodactylus crayfish. Moreover, we demonstrated that F. oxysporum can also infect non-wounded crayfish.
Collapse
Affiliation(s)
- Yiğit Taştan
- Department of Aquaculture, Faculty of Fisheries, Kastamonu University, Kastamonu 37150, Turkey
| | | |
Collapse
|
16
|
Li G, Xie G, Wang H, Wan X, Li X, Shi C, Wang Z, Gong M, Li T, Wang P, Zhang Q, Huang J. Characterization of a novel shrimp pathogen, Vibrio brasiliensis, isolated from Pacific white shrimp, Penaeus vannamei. JOURNAL OF FISH DISEASES 2021; 44:1543-1552. [PMID: 34152602 DOI: 10.1111/jfd.13475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A novel pathogenic strain Vibrio 20190611023 was isolated from the hepatopancreas of moribund cultured Penaeus vannamei suffering from black gill disease. This strain was identified as V. brasiliensis based on the phylogenetic analyses of 16S rDNA gene and five other housekeeping genes (i.e., gapA, ftsZ, mreB, topA and gyrB). Some biochemical features of this strain were determined with an API 20NE system, and its haemolytic activity was determined using a sheep blood agar plate. The pathogenicity of this isolate 20190611023 was confirmed by the experimental challenge tests and histopathological examinations. P. vannamei were challenged via reverse gavage with different doses of bacterial suspensions. The calculated median lethal dose (LD50 ) was (3.16 ± 1.78) × 105 CFU/g (body weight). Moreover, antibiotic susceptibility tests were performed, the results of which showed that the strain 20190611023 was sensitive to chloramphenicol, compound sulphamethoxazole, ciprofloxacin, doxycycline and oxacillin, but resistant to erythromycin, kanamycin, gentamicin, cefoperazone, ceftriaxone, cefamezin and piperacillin. To our knowledge, this is the first report for demonstrating V. brasiliensis as a shrimp pathogen, which expands the host range of V. brasiliensis infection. The present study highlights that more attention should be paid to this novel pathogen in intensive shrimp aquaculture.
Collapse
Affiliation(s)
- Ge Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guosi Xie
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hailiang Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiaoyuan Wan
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xinshu Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Chengyin Shi
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ziyan Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Miao Gong
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ting Li
- Hainan Zhongzheng Aquatic Science and Technology Co., Ltd, Dongfang, China
| | - Ping Wang
- Hainan Zhongzheng Aquatic Science and Technology Co., Ltd, Dongfang, China
| | - Qingli Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Jie Huang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| |
Collapse
|
17
|
Matanza XM, López-Suárez L, do Vale A, Osorio CR. The two-component system RstAB regulates production of a polysaccharide capsule with a role in virulence in the marine pathogen Photobacterium damselae subsp. damselae. Environ Microbiol 2021; 23:4859-4880. [PMID: 34423883 DOI: 10.1111/1462-2920.15731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) causes disease in marine animals and humans. Previous studies demonstrated that mutation of the two-component system RstAB strongly impacts virulence of this pathogen, but the RstAB regulon has not been thoroughly elucidated. We here compared the transcriptomes of Pdd RM-71 and ΔrstA and ΔrstB derivatives using RNA-seq. In accordance with previous studies, RstAB positively regulated cytotoxins Dly, PhlyP and PhlyC. This analysis also demonstrated a positive regulation of outer membrane proteins, resistance against antimicrobials and potential virulence factors by this system. Remarkably, RstAB positively regulated two hitherto uncharacterised gene clusters involved in the synthesis of a polysaccharide capsule. Presence of a capsular layer in wild-type cells was confirmed by transmission electron microscopy, whereas rstA and rstB mutants were non-capsulated. Mutants for capsule synthesis genes, wza and wzc exhibited acapsular phenotypes, were impaired in resistance against the bactericidal action of fish serum and mucus, and were strongly impaired in virulence for fish, indicating a major role of capsule in virulence. Collectively, this study demonstrates that RstAB is a major positive regulator of key virulence factors including a polysaccharide capsule essential for full virulence in a pathogenic Photobacterium.
Collapse
Affiliation(s)
- Xosé M Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura López-Suárez
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Restrepo L, Domínguez-Borbor C, Bajaña L, Betancourt I, Rodríguez J, Bayot B, Reyes A. Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus). MICROBIOME 2021; 9:88. [PMID: 33845910 PMCID: PMC8042889 DOI: 10.1186/s40168-021-01043-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/05/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. RESULTS We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp's survival. The identification of probiotic bacterial species that are effective in the host's colonization is important to promote animal health and prevent disease. CONCLUSIONS This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world. Video Abstract.
Collapse
Affiliation(s)
- Leda Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Cristóbal Domínguez-Borbor
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Leandro Bajaña
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Irma Betancourt
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jenny Rodríguez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Bonny Bayot
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia.
- Center for Genome Sciences and Systems Biology, Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
19
|
El-Son MAM, Elbahnaswy S, Ibrahim I. Molecular and histopathological characterization of Photobacterium damselae in naturally and experimentally infected Nile tilapia (Oreochromis niloticus). JOURNAL OF FISH DISEASES 2020; 43:1505-1517. [PMID: 32984991 DOI: 10.1111/jfd.13251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Mass mortality has occurred among cultured Nile tilapia, Oreochromis niloticus, on fish farms in Manzala, Dakahlia province, Egypt, in the summer season, 2019. Moribund fish were reported with deep ulcers, septicaemic lesions and sampled for bacterial isolation. In this study, most isolates were subjected to bacteriological examination, antibiotic sensitivity test, 16S rRNA gene sequencing and histopathological examination. Following isolate identification, intraperitoneal challenge of Nile tilapia with a bacterial suspension 2 × 106 CFU/ml was performed. Samples from liver, spleen and kidney were collected for histological and biochemical analysis. The results showed a high similarity (99%) to Photobacterium damselae strains using phylogenetic analysis of 16S rRNA. P. damselae exhibited resistance to amoxicillin and erythromycin, as well it was highly sensitive to chloramphenicol and doxycycline. Moreover, haemorrhage, oedema, hemosiderosis and melanomacrophage activation in the liver and head kidney of infected fish were detected by light and electron microscopy. Also, significant higher levels of CAT and SOD in the spleen and head kidney, as well as the serum levels of NO were observed in experimentally challenged O. niloticus, compared to the control fish. Our data identified P. damselae for the first time from infected Nile tilapia, describing its sensitivity to a variety of antibiotics, histopathological alterations and oxidative stress impact, and it could be useful indicators for understanding P. damselae pathogenesis, which might provide a preventive efficacy for P. damselae.
Collapse
Affiliation(s)
- Mai A M El-Son
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Iman Ibrahim
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|