1
|
Kitiyodom S, Kamble MT, Yostawonkul J, Thompson KD, Pirarat N. Effectiveness of a new cationic lipid-based nanovaccine for enhancing immersion vaccination against Flavobacterium oreochromis in red tilapia (Oreochromis sp.). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110289. [PMID: 40118230 DOI: 10.1016/j.fsi.2025.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Flavobacterium oreochromis (Fo) poses a significant threat to tilapia, leading to economic losses due to mortality. Immersion vaccines, while practical for small fish, often result in limited antigen absorption. This study aimed to develop a cationic lipid-based nanoparticle vaccine using cetyltrimethylammonium bromide (CTAB) and evaluate its efficacy against F. oreochromis in red tilapia. In the first trial, healthy red tilapia were immersion vaccinated for 30 min, with three groups included in the trial: control (non-vaccinated), formalin-killed sonicated cells (FK-SC), or cationic lipid-based nanoparticles (Fo-NV). The second trial followed the same design, with booster vaccinations (FK-SC-B, Fo-NV-B) administered 14 days after the first vaccination. Fish were challenged with virulent F. oreochromis at multiple time points up to 120 days post-vaccination (dpv) in the first trial and up to 180 dpv in the second, with survival recorded for 10 days post-challenge during each challenge. Specific IgM antibody levels were measured at various dpv intervals. The Fo-NV group, characterized by nanoscale size (179 nm) and positive charge (13 mV), showed enhanced stability and mucoadhesion compared to FK-SC. In the first trial, the Fo-NV group had significantly higher relative percentage survival (RPS) (83.3-63.3 %) compared to FK-SC (33.3-10.0 %) during the first three months. In the second trial, the Fo-NV-B group exhibited elevated IgM levels and higher RPS (81.8-58.5 %) compared to control groups over five months. In conclusion, a booster dose of Fo-NV improved vaccine efficacy, enhancing antigen delivery to mucosal surfaces and providing prolonged protection against F. oreochromis infection.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manoj Tukaram Kamble
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jakarwan Yostawonkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic, and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Thunes NC, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Gliding motility proteins GldJ and SprB contribute to Flavobacterium columnare virulence. J Bacteriol 2024; 206:e0006824. [PMID: 38517170 PMCID: PMC11025331 DOI: 10.1128/jb.00068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - David Pérez-Pascual
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Bunnoy A, Thompson KD, Thangsunan P, Chokmangmeepisarn P, Yata T, Pirarat N, Kitiyodom S, Thangsunan P, Sukkarun P, Prukbenjakul P, Panthukumphol N, Morishita M, Srisapoome P, Rodkhum C. Development of a bivalent mucoadhesive nanovaccine to prevent francisellosis and columnaris diseases in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108813. [PMID: 37182796 DOI: 10.1016/j.fsi.2023.108813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRβ in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, United Kingdom.
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Sirikorn Kitiyodom
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Pimwarang Sukkarun
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pochara Prukbenjakul
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Naphat Panthukumphol
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Manami Morishita
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Thunes NC, Mohammed HH, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Conrad RA, Ghigo JM, McBride MJ. Secreted peptidases contribute to virulence of fish pathogen Flavobacterium columnare. Front Cell Infect Microbiol 2023; 13:1093393. [PMID: 36816589 PMCID: PMC9936825 DOI: 10.3389/fcimb.2023.1093393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Haitham H. Mohammed
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,*Correspondence: Mark J. McBride,
| |
Collapse
|
5
|
Conrad RA, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Flavobacterium columnare ferric iron uptake systems are required for virulence. Front Cell Infect Microbiol 2022; 12:1029833. [PMID: 36325469 PMCID: PMC9618737 DOI: 10.3389/fcimb.2022.1029833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Flavobacterium columnare, which causes columnaris disease, is one of the costliest pathogens in the freshwater fish-farming industry. The virulence mechanisms of F. columnare are not well understood and current methods to control columnaris outbreaks are inadequate. Iron is an essential nutrient needed for metabolic processes and is often required for bacterial virulence. F. columnare produces siderophores that bind ferric iron for transport into the cell. The genes needed for siderophore production have been identified, but other components involved in F. columnare iron uptake have not been studied in detail. We identified the genes encoding the predicted secreted heme-binding protein HmuY, the outer membrane iron receptors FhuA, FhuE, and FecA, and components of an ATP binding cassette (ABC) transporter predicted to transport ferric iron across the cytoplasmic membrane. Deletion mutants were constructed and examined for growth defects under iron-limited conditions and for virulence against zebrafish and rainbow trout. Mutants with deletions in genes encoding outer membrane receptors, and ABC transporter components exhibited growth defects under iron-limited conditions. Mutants lacking multiple outer membrane receptors, the ABC transporter, or HmuY retained virulence against zebrafish and rainbow trout mirroring that exhibited by the wild type. Some mutants predicted to be deficient in multiple steps of iron uptake exhibited decreased virulence. Survivors of exposure to such mutants were partially protected against later infection by wild-type F. columnare.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- *Correspondence: Mark J. McBride,
| |
Collapse
|
6
|
Type IX secretion system effectors and virulence of the model Flavobacterium columnare strain MS-FC-4. Appl Environ Microbiol 2021; 88:e0170521. [PMID: 34818105 DOI: 10.1128/aem.01705-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and for gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and to other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted ten genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE: Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding ten secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.
Collapse
|
7
|
Donati VL, Dalsgaard I, Runtuvuori-Salmela A, Kunttu H, Jørgensen J, Castillo D, Sundberg LR, Middelboe M, Madsen L. Interactions between Rainbow Trout Eyed Eggs and Flavobacterium spp. Using a Bath Challenge Model: Preliminary Evaluation of Bacteriophages as Pathogen Control Agents. Microorganisms 2021; 9:971. [PMID: 33946270 PMCID: PMC8146780 DOI: 10.3390/microorganisms9050971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
The microbial community surrounding fish eyed eggs can harbor pathogenic bacteria. In this study we focused on rainbow trout (Oncorhynchus mykiss) eyed eggs and the potential of bacteriophages against the pathogenic bacteria Flavobacterium psychrophilum and F. columnare. An infection bath method was first established, and the effects of singular phages on fish eggs was assessed (survival of eyed eggs, interaction of phages with eyed eggs). Subsequently, bacteria-challenged eyed eggs were exposed to phages to evaluate their effects in controlling the bacterial population. Culture-based methods were used to enumerate the number of bacteria and/or phages associated with eyed eggs and in the surrounding environment. The results of the study showed that, with our infection model, it was possible to re-isolate F. psychrophilum associated with eyed eggs after the infection procedure, without affecting the survival of the eggs in the short term. However, this was not possible for F. columnare, as this bacterium grows at higher temperatures than the ones recommended for incubation of rainbow trout eyed eggs. Bacteriophages do not appear to negatively affect the survival of rainbow trout eyed eggs and they do not seem to strongly adhere to the surface of eyed eggs either. Finally, the results demonstrated a strong potential for short term (24 h) phage control of F. psychrophilum. However, further studies are needed to explore if phage control can be maintained for a longer period and to further elucidate the mechanisms of interactions between Flavobacteria and their phages in association with fish eggs.
Collapse
Affiliation(s)
- Valentina L. Donati
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| | - Inger Dalsgaard
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| | - Anniina Runtuvuori-Salmela
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Heidi Kunttu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Johanna Jørgensen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Lone Madsen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| |
Collapse
|