1
|
Zhang Y, Wang Q, Zhu F. Epigallocatechin-3-gallate attenuates the sulfamethoxazole-induced immunotoxicity and reduces SMZ residues in Procambarus clarkii. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134602. [PMID: 38749242 DOI: 10.1016/j.jhazmat.2024.134602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Sulfamethoxazole (SMZ) is a commonly used antibiotic in aquaculture, and its residues in water bodies pose a significant threat to aquatic organisms in the water environment. In the present study, epigallocatechin-3-gallate (EGCG), a catecholamine, was used to mitigate the immunotoxicity caused by SMZ exposure in Procambarus clarkii. EGCG reduced the apoptosis rate, which was elevated by SMZ exposure, and increased the total hemocyte count. Simultaneously, EGCG enhanced the activities of enzymes related to antibacterial and antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), lysozyme (LZM), acid phosphatase (ACP), and GSH, which were decreased following SMZ exposure. Hepatopancreatic histology confirmed that EGCG ameliorated SMZ-induced tissue damage caused by SMZ exposure. In addition to EGCG attenuating SMZ-induced immunotoxicity in crayfish, we determined that EGCG can effectively reduce SMZ residues in crayfish exposed to SMZ. In addition, at the genetic level, the expression levels of genes related to the immune response in hemocytes were disrupted after SMZ exposure, and EGCG promoted their recovery and stimulated an increase in the expression levels of metabolism-related transcripts in hemocytes. The transcriptome analysis was conducted, and "phagosome" and "apoptosis" pathways were shown to be highlighted using Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. To the best of our knowledge, this is the first study to confirm that EGCG attenuates SMZ-induced immunotoxicity in aquatic animals and reduces SMZ residues in aquatic animals exposed to SMZ. Our study contributes to the understanding of the mechanisms by which EGCG reduces the immunotoxicity of antibiotic residues in aquatic animals.
Collapse
Affiliation(s)
- Yunchao Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Qi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Zhang L, Song Z, Zhou Y, Zhong S, Yu Y, Liu T, Gao X, Li L, Kong C, Wang X, He L, Gan J. The Accumulation of Toxic Elements (Pb, Hg, Cd, As, and Cu) in Red Swamp Crayfish ( Procambarus clarkii) in Qianjiang and the Associated Risks to Human Health. TOXICS 2023; 11:635. [PMID: 37505600 PMCID: PMC10384343 DOI: 10.3390/toxics11070635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Due to rapidly expanding crayfish consumption worldwide, the food safety of red swamp crayfish (Procambarus clarkii) is of great concern. China is the largest consumer and producer of crayfish globally. As of yet, it is unknown whether the main crayfish production cities in China are within safe levels of toxic heavy metals and metalloids. For 16 consecutive years, Qianjiang city ranked first in China in processing export volumes of red swamp crayfish. This study presents a comprehensive analysis of the enrichment levels and associated health risks of the species in Qianjiang. In our research, samples of four crayfish tissues, including the head, hepatopancreas, gills, and muscles, were collected from 38 sampling sites distributed in Qianjiang to evaluate the concentration levels of five heavy metals (Pb, Hg, Cd, As, and Cu). The concentration levels of all five metals in muscle did not surpass the national standard. Furthermore, eight significant correlations have been found. For further in-depth assess risk of crayfish in Qianjiang, estimated daily intake (EDI), target hazard quotient (THQ), carcinogenic risk (CR), and estimated maximum allowable consumption rates (CRmm) were evaluated in the abdomen muscle and hepatopancreas. The THQ values for each metal were found to be less than 1, while the CR values were below 10-6. Additionally, the CRmm for adults was determined to be 17.2 meals per month. These findings, based on the analysis of five metallic elements included in this study, suggest that the consumption of crayfish abdomen muscle in Qianjiang does not pose any significant health risks. However, it is noteworthy that certain regions exhibit elevated levels of arsenic in the hepatopancreas, surpassing the national standard, thereby rendering them unsuitable for excessive consumption. In general, the findings can be used to provide guidance for safe dietary practices in China.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ziwei Song
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoping Gao
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Xinna Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| |
Collapse
|
3
|
Identification of Epigallocatechin-3-Gallate (EGCG) from Green Tea Using Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an era where humanity is reinstating its lost hope and expectation on natural products, green tea occupies quite a position for what it has proven to be, in its endeavors for human welfare and health. Epigallocatechin-3-gallate (EGCG) is the key to the vast biological activities of green tea. Green tea is no longer in the backdrop; it has emerged as the most viral, trending bioactive molecule when it comes to health benefits for human beings. This review focuses on the use of various analytical techniques for the analysis of EGCG. That which has been achieved so far, in terms of in vitro, pure component analysis, as well as those spikes in biological fluids and those in vivo in animal and human samples, was surveyed and presented. The use of MS-based techniques for the analysis of EGCG is elaborately reviewed and the need for improvising the applications is explained. The review emphasizes that there is plenty of room to explore matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications in this subject area.
Collapse
|
4
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|