1
|
Porninta K, Khemacheewakul J, Techapun C, Phimolsiripol Y, Jantanasakulwong K, Sommanee S, Mahakuntha C, Feng J, Htike SL, Moukamnerd C, Zhuang X, Wang W, Qi W, Li FL, Liu T, Kumar A, Nunta R, Leksawasdi N. Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae. Front Bioeng Biotechnol 2024; 11:1332185. [PMID: 38304106 PMCID: PMC10830760 DOI: 10.3389/fbioe.2023.1332185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production. The optimal pretreatment conditions (diluted sulfuric acid concentration (% w/v), treatment time (min)) for SCB (3.36, 113), RS (3.77, 109), and CC (3.89, 112) and the optimal enzymatic hydrolysis conditions (pretreated solid concentration (% w/v), hydrolysis time (h)) for SCB (12.1, 93), RS (10.9, 61), and CC (12.0, 90) were achieved. CC xylose-rich and CC glucose-rich hydrolysates obtained from the respective optimal condition of pretreatment and enzymatic hydrolysis steps were used for xylitol and ethanol production. The statistically significant highest (p ≤ 0.05) xylitol and ethanol yields were 65% ± 1% and 86% ± 2% using Candida magnoliae TISTR 5664. C. magnoliae could statistically significantly degrade (p ≤ 0.05) the inhibitors previously formed during the pretreatment step, including up to 97% w/w hydroxymethylfurfural, 76% w/w furfural, and completely degraded acetic acid during the xylitol production. This study was the first report using the mixed whole cells harvested from xylitol and ethanol production as a biocatalyst in PAC biotransformation under a two-phase emulsion system (vegetable oil/1 M phosphate (Pi) buffer). PAC concentration could be improved by 2-fold compared to a single-phase emulsion system using only 1 M Pi buffer.
Collapse
Affiliation(s)
- Kritsadaporn Porninta
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Julaluk Khemacheewakul
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Charin Techapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sumeth Sommanee
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchadaporn Mahakuntha
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Juan Feng
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Su Lwin Htike
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | | | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Anbarasu Kumar
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur, India
| | - Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, Thailand
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Feng J, Techapun C, Phimolsiripol Y, Phongthai S, Khemacheewakul J, Taesuwan S, Mahakuntha C, Porninta K, Htike SL, Kumar A, Nunta R, Sommanee S, Leksawasdi N. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. BIORESOURCE TECHNOLOGY 2024; 392:129926. [PMID: 37925084 DOI: 10.1016/j.biortech.2023.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Corn, rice, wheat, and sugar are major sources of food calories consumption thus the massive agricultural waste (AW) is generated through agricultural and agro-industrial processing of these raw materials. Biological conversion is one of the most sustainable AW management technologies. The abundant supply and special structural composition of cellulose, hemicellulose, and lignin could provide great potential for waste biological conversion. Conversion of hemicellulose to xylitol, cellulose to ethanol, and utilization of remnant whole cells biomass to synthesize phenylacetylcarbinol (PAC) are strategies that are both eco-friendly and economically feasible. This co-production strategy includes essential steps: saccharification, detoxification, cultivation, and biotransformation. In this review, the implemented technologies on each unit step are described, the effectiveness, economic feasibility, technical procedures, and environmental impact are summarized, compared, and evaluated from an industrial scale viewpoint.
Collapse
Affiliation(s)
- Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Suphat Phongthai
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Krisadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur 613403, India.
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
3
|
Nunta R, Khemacheewakul J, Techapun C, Sommanee S, Feng J, Htike SL, Mahakuntha C, Porninta K, Phimolsiripol Y, Jantanasakulwong K, Moukamnerd C, Watanabe M, Kumar A, Leksawasdi N. Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates. Biomolecules 2023; 13:1770. [PMID: 38136641 PMCID: PMC10741578 DOI: 10.3390/biom13121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
A study evaluated nine kinetic data and four kinetic parameters related to growth, production of various phytase activities (PEact), and released phosphate ion concentration ([Pi]) from five lactic acid bacteria (LAB) strains cultivated in three types of media: phytate (IP6), milling stage rice bran (MsRB), and whitening stage rice bran (WsRB). Score ranking techniques were used, combining these kinetic data and parameters to select the most suitable LAB strain for each medium across three cultivation time periods (24, 48, and 72 h). In the IP6 medium, Lacticaseibacillus casei TISTR 1500 exhibited statistically significant highest (p ≤ 0.05) normalized summation scores using a 2:1 weighting between kinetic and parameter data sets. This strain also had the statistically highest levels (p ≤ 0.05) of produced phosphate ion concentration ([Pi]) (0.55 g/L) at 72 h and produced extracellular specific phytase activity (ExSp-PEact) (0.278 U/mgprotein) at 48 h. For the MsRB and WsRB media, Lactiplantibacillus plantarum TISTR 877 performed exceptionally well after 72 h of cultivation. It produced ([Pi], ExSp-PEact) pairs of (0.53 g/L, 0.0790 U/mgprotein) in MsRB and (0.85 g/L, 0.0593 U/mgprotein) in WsRB, respectively. Overall, these findings indicate the most promising LAB strains for each medium and cultivation time based on their ability to produce phosphate ions and extracellular specific phytase activity. The selection process utilized a combination of kinetic data and parameter analysis.
Collapse
Affiliation(s)
- Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kritsadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | | | - Masanori Watanabe
- Graduate School of Agriculture, Yamagata University, 1-23 Wakada-Machi, Tsuruoka, Yamagata 997-8555, Japan;
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613403, India
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| |
Collapse
|
4
|
Kumar A, Techapun C, Sommanee S, Mahakuntha C, Feng J, Htike SL, Khemacheewakul J, Porninta K, Phimolsiripol Y, Wang W, Zhuang X, Qi W, Jantanasakulwong K, Nunta R, Leksawasdi N. Production of Phenylacetylcarbinol via Biotransformation Using the Co-Culture of Candida tropicalis TISTR 5306 and Saccharomyces cerevisiae TISTR 5606 as the Biocatalyst. J Fungi (Basel) 2023; 9:928. [PMID: 37755036 PMCID: PMC10533076 DOI: 10.3390/jof9090928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Phenylacetylcarbinol (PAC) is a precursor for the synthesis of several pharmaceuticals, including ephedrine, pseudoephedrine, and norephedrine. PAC is commonly produced through biotransformation using microbial pyruvate decarboxylase (PDC) in the form of frozen-thawed whole cells. However, the lack of microorganisms capable of high PDC activity is the main factor in the production of PAC. In addition, researchers are also looking for ways to utilize agro-industrial residues as an inexpensive carbon source through an integrated biorefinery approach in which sugars can be utilized for bioethanol production and frozen-thawed whole cells for PAC synthesis. In the present study, Candida tropicalis, Saccharomyces cerevisiae, and the co-culture of both strains were compared for their biomass and ethanol concentrations, as well as for their volumetric and specific PDC activities when cultivated in a sugarcane bagasse (SCB) hydrolysate medium (SCBHM). The co-culture that resulted in a higher level of PAC (8.65 ± 0.08 mM) with 26.4 ± 0.9 g L-1 ethanol production was chosen for further experiments. Biomass production was scaled up to 100 L and the kinetic parameters were studied. The biomass harvested from the bioreactor was utilized as frozen-thawed whole cells for the selection of an initial pyruvate (Pyr)-to-benzaldehyde (Bz) concentration ([Pyr]/[Bz]) ratio suitable for the PAC biotransformation in a single-phase emulsion system. The initial [Pyr]/[Bz] at 100/120 mM resulted in higher PAC levels with 10.5 ± 0.2 mM when compared to 200/240 mM (8.60 ± 0.01 mM). A subsequent two-phase emulsion system with Pyr in the aqueous phase, Bz in the organic phase, and frozen-thawed whole cells of the co-culture as the biocatalyst produced a 1.46-fold higher PAC level when compared to a single-phase emulsion system. In addition, the cost analysis strategy indicated preliminary costs of USD 0.82 and 1.01/kg PAC for the single-phase and two-phase emulsion systems, respectively. The results of the present study suggested that the co-culture of C. tropicalis and S. cerevisiae can effectively produce bioethanol and PAC from SCB and would decrease the overall production cost on an industrial scale utilizing the two-phase emulsion system with the proposed multiple-pass strategy.
Collapse
Affiliation(s)
- Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613403, India
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kritsadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; (W.W.); (X.Z.); (W.Q.)
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; (W.W.); (X.Z.); (W.Q.)
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; (W.W.); (X.Z.); (W.Q.)
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.K.); (C.T.); (S.S.); (C.M.); (J.F.); (S.L.H.); (J.K.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
5
|
Nunta R, Khemacheewakul J, Sommanee S, Mahakuntha C, Chompoo M, Phimolsiripol Y, Jantanasakulwong K, Kumar A, Leksawasdi N. Extraction of gymnemic acid from Gymnema inodorum (Lour.) Decne. leaves and production of dry powder extract using maltodextrin. Sci Rep 2023; 13:11193. [PMID: 37433848 PMCID: PMC10336054 DOI: 10.1038/s41598-023-38305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
The aim of the present study was to maximize the extraction of gymnemic acid (GA) from Phak Chiang Da (PCD) leaves, an indigenous medicinal plant used for diabetic treatment in Northern Thailand. The goal was to overcome the low concentration of GA in the leaves, which limits its applications among a larger population and develop a process to produce GA-enriched PCD extract powder. The solvent extraction method was employed to extract GA from PCD leaves. The effect of ethanol concentration and extraction temperature were investigated to determine the optimum extraction conditions. A process was developed to produce GA-enriched PCD extract powder, and its properties were characterized. In addition, color analysis (L*, a*, and b*) was performed to evaluate the overall appearance of the PCD extract powder. Antioxidant activity assay was conducted to assess the ability of the PCD extract powder to neutralize DPPH free radicals. The results showed that the concentration of 50% (v/v) ethanol at 70 °C for 2 h resulted in a higher GA concentration of 8307 mg/kg from dried PCD leaves. During the drying process, the use of maltodextrin at a concentration of 0.5% (w/v) was found to produce PCD extract powder with the maximum GA concentration. The color analysis revealed that the PCD extract powder had a dark greenish tint mixed with yellow. The antioxidant activity assay showed that 0.1 g of PCD extract powder was able to neutralize 75.8% of DPPH free radicals. The results concluded that PCD extract powder could potentially be used as a source of nutraceuticals or as a functional food ingredient. These findings suggest the potential value of GA-rich PCD extract powder in various applications in the pharmaceutical, nutraceutical, or food industries.
Collapse
Affiliation(s)
- Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Julaluk Khemacheewakul
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sumeth Sommanee
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Mayuree Chompoo
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Anbarasu Kumar
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur, 613403, India.
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
6
|
Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci Rep 2023; 13:727. [PMID: 36639688 PMCID: PMC9839728 DOI: 10.1038/s41598-023-27451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.
Collapse
|
7
|
Mahakuntha C, Reungsang A, Nunta R, Leksawasdi N. Kinetics of Whole Cells and Ethanol Production from Candida tropicalis TISTR 5306 Cultivation in Batch and Fed-batch Modes Using Assorted Grade Fresh Longan Juice. AN ACAD BRAS CIENC 2021; 93:e20200220. [PMID: 34877969 DOI: 10.1590/0001-3765202120200220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022] Open
Abstract
The kinetic profiles of Candida tropicalis TISTR 5306 cultivation based on modified yeast-malt (MYM), assorted grade fresh longan juice (AsgLG) and longan solid waste extract (LSWE) medium were evaluated in 1 l batch mode. The highest ethanol concentration level (25.5 ± 0.8 g/l) and ethanol yield - Yp/s of 0.491 ± 0.017 g ethanol/g consumed substrate, dried biomass concentration level (9.44 ± 0.05 g/l) and dried biomass yield - Yp/s of 0.533 ± 0.170 g dried biomass/g consumed substrate, specific pyruvate decarboxylase (PDC) activity (0.037 ± 0.003 U/mg protein) were achieved (p ≤ 0.05) in AsgLG medium. Scores ranking strategy were employed and AsgLG medium was subsequently selected with in the highest total score (p ≤ 0.05) of 698 ± 7 at 48 h. The cultivation in fed-batch mode with three rounds of pulse feeding (PF) in 1 l AsgLG medium was carried out. The apparent highest ethanol and dried biomass concentration levels with corresponding yields relative to time zero were (28.3 ± 0.5 g/l, 0.482 ± 0.012 g/g) at 120 h of PF2 and (9.39 ± 0.04 g/l, 0.110 ± 0.001 g/g) at 192 h of PF3. The maximum specific PDC activity was 0.057 ± 0.006 U/mg protein during PF1 feeding.
Collapse
Affiliation(s)
- Chatchadaporn Mahakuntha
- Division of Biotechnology, Faculty of Graduate School, Chiang Mai University, Chiang Mai, 50100, Thailand.,Cluster of Agro Bio-Circular-Green Industry (Agro BCG) and Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen, 40002, Thailand.,Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) and Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG) and Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.,Division of Food Process Engineering, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| |
Collapse
|
8
|
Khemacheewakul J, Taesuwan S, Nunta R, Techapun C, Phimolsiripol Y, Rachtanapun P, Jantanasakulwong K, Porninta K, Sommanee S, Mahakuntha C, Chaiyaso T, Seesuriyachan P, Reungsang A, Trinh NTN, Wangtueai S, Sommano SR, Leksawasdi N. Validation of mathematical model with phosphate activation effect by batch (R)-phenylacetylcarbinol biotransformation process utilizing Candida tropicalis pyruvate decarboxylase in phosphate buffer. Sci Rep 2021; 11:11813. [PMID: 34083711 PMCID: PMC8175490 DOI: 10.1038/s41598-021-91294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
The (R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min-1). A parameter search strategy aimed at minimizing overall residual sum of square (RSST) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (ka) of (9.38 ± < 0.01) × 10-6% relative PDC activity min-1 mM-1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSST, mean sum of square error (MSE), and coefficient of determination (R2) values of 662, 17.4, and 0.9863, respectively.
Collapse
Affiliation(s)
- Julaluk Khemacheewakul
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Siraphat Taesuwan
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Charin Techapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kritsadaporn Porninta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sumeth Sommanee
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Thanongsak Chaiyaso
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Phisit Seesuriyachan
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Ngoc Thao Ngan Trinh
- Department of Food Engineering, Faculty of Food Science and Technology, Nong Lam University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 720371, Vietnam
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon, 74000, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|