1
|
Hariharan S, Patti A, Arora A. Functional Proteins from Biovalorization of Peanut Meal: Advances in Process Technology and Applications. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:13-24. [PMID: 36650319 DOI: 10.1007/s11130-022-01040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Environmental costs associated with meat production have necessitated researchers and food manufacturers to explore alternative sources of high-quality protein, especially from plant origin. Proteins from peanuts and peanut-by products are high-quality, matching industrial standards and nutritional requirements. This review contributes to recent developments in the production of proteins from peanut and peanut meal. Conventional processing techniques such as hot-pressing kernels, use of solvents in oil removal, and employing harsh acids and alkalis denature the protein and damage its functional properties, limiting its use in food formulations. Controlled hydrolysis (degree of hydrolysis between 1 and 10%) using neutral and alkaline proteases can extract proteins and improve peanut proteins' functional properties, including solubility, emulsification, and foaming activity. Peanut proteins can potentially be incorporated into meat analogues, bread, soups, confectionery, frozen desserts, and cakes. Recently, pretreatment techniques (microwave, ultrasound, high pressure, and atmospheric cold plasma) have been explored to enhance protein extraction and improve protein functionalities. However, most of the literature on physicochemical pretreatment techniques has been limited to the lab scale and has not been analysed at the pilot scale. Peanut-derived peptides also exhibit antioxidant, anti-hypertensive, and anti-thrombotic properties. There exists a potential to incorporate these peptides into high-fat foods to retard oxidation. These peptides can also be consumed as dietary supplements for regulating blood pressure. Further research is required to analyse the sensory attributes and shelf lives of these novel products. In addition, animal models or clinical trials need to be conducted to validate these results on a larger scale.
Collapse
Affiliation(s)
- Subramoni Hariharan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Antonio Patti
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amit Arora
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
2
|
Zhang L, Zhang M, Sun X, Chen F, Wu Q. Effects of
AOT
reverse micelle extraction on structure and emulsifying properties of soybean protein. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lifen Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Mingzhu Zhang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Xiaoyang Sun
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Fusheng Chen
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| | - Qian Wu
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain Henan University of Technology Zhengzhou Henan PR China
| |
Collapse
|
3
|
Sy Mohamad SF, Mohd Said F, Abdul Munaim MS, Mohamad S, Azizi Wan Sulaiman WM. Application of experimental designs and response surface methods in screening and optimization of reverse micellar extraction. Crit Rev Biotechnol 2020; 40:341-356. [PMID: 31931631 DOI: 10.1080/07388551.2020.1712321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Reverse micellar extraction (RME) has emerged as a versatile and efficient tool for downstream processing (DSP) of various biomolecules, including structural proteins and enzymes, due to the substantial advantages over conventional DSP methods. However, the RME system is a complex dependency of several parameters that influences the overall selectivity and performance of the RME system, hence this justifies the need for optimization to obtain higher possible extraction results. For the last two decades, many experimental design strategies for screening and optimization of RME have been described in literature. The objective of this article is to review the use of different experimental designs and response surface methodologies that are currently used to screen and optimize the RME system for various types of biomolecules. Overall, this review provides the rationale for the selection of appropriate screening or optimization techniques for the parameters associated with both forward and backward extraction during the RME of biomolecules.
Collapse
Affiliation(s)
- Sharifah Fathiyah Sy Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Mimi Sakinah Abdul Munaim
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Shahril Mohamad
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Zhao X, Liu H, Zhang X, Zhu H, Ao Q. Surface structure and volatile characteristic of peanut proteins obtained through AOT reverse micelles. Colloids Surf B Biointerfaces 2019; 173:860-868. [DOI: 10.1016/j.colsurfb.2018.10.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
|