1
|
Kęska P, Stadnik J, Stasiak DM. Influence of sonication pretreatment on antiradical and anti-ACE activity of protein hydrolysates from fermented pork loins. Meat Sci 2024; 212:109472. [PMID: 38422590 DOI: 10.1016/j.meatsci.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess whether ultrasound treatment (sonification time: 5, 15, and 30 min; constants: ∼40 kHz, ∼2.5 W cm2) can be applied prior to hydrolysis to enhance the anti-radical and angiotensin converting enzyme inhibiting (anti-ACE) effect of the hydrolysates from fermented pork loins. Enzymatic hydrolysis was performed using pepsin, followed by pancreatin. The influence of meat matrix on the course of hydrolysis, shaped using a lactic acid bacteria (LAB)-based starter culture, was also analyzed. It was found that proteases caused a systematic increase in the content of peptides, while pancreatin limited the peptide content in the protein hydrolysate from the loins subjected to spontaneous fermentation. Moreover, for these tests, sonication time had a negligible effect on the peptides content of the hydrolysates. On the other hand, for the sample of LAB-fermented products, both sonication time and stage of hydrolysis promoted the biological activity of the hydrolysates. Samples from the LAB-fermented meat had more peptides at the stage of digestion with pepsin and pancreatin, exhibiting much faster antiradical and anti-ACE activity compared to the control sample. The obtained results suggest that the use of LAB promotes the release of antiradical peptides during the two-step enzymatic hydrolysis, the duration of which can be shortened to achieve satisfactory biofunctionalities. Additional application of sonication pretreatment allows controlling the course of the hydrolysis, as the pro-health, biological effect of some protein-derived sequences is associated with the content of peptides.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Joanna Stadnik
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Dariusz M Stasiak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| |
Collapse
|
2
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 PMCID: PMC10966786 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
3
|
Peptidomic Characteristic of Peptides Generated in Dry-Cured Loins with Probiotic Strains of LAB during 360-Days Aging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptidomics refers to the comprehensive profiling of endogenous peptides obtained from biological sources. The formation of endogenous peptides is dependent on not only endogenous factors but also exogenous factors such as microbial proteases or process conditions, including fermentation. This study analyzed the probiotic strains of Lactobacillus rhamnosus LOCK900 (LOCK), Bifidobacterium animalis ssp. lactis BB-12 (BB12), and potential probiotic Lactobacillus acidophilus Bauer Ł0938 (BAUER) to assess their ability of fermentation and peptide production in dry-cured pork loin. The peptides obtained after in vitro digestion were characterized by liquid chromatography–tandem mass spectrometry. Based on the sequences identified, the degree of similarity or differences between the peptides was determined and presented graphically on the factor plane. The charts showed that the meat products aged for 180 and 270 days were the most diverse when BB12 or BAUER were used as starter cultures. Myosin and keratin were identified as the most likely precursors of bioactive peptides in products obtained using this strain of lactic acid bacteria (LAB). The knowledge acquired from this study may contribute to the design of functional meat products as the results revealed not only the peptidogenic potential of the LAB strains indicated on their beneficial effect on the bioactivity of peptides.
Collapse
|
4
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
5
|
Munekata PES, Pateiro M, Tomasevic I, Domínguez R, da Silva Barretto AC, Santos EM, Lorenzo JM. Functional fermented meat products with probiotics-A review. J Appl Microbiol 2021; 133:91-103. [PMID: 34689391 DOI: 10.1111/jam.15337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Fermentation has been an important strategy in the preservation of foods. The use of starter cultures with probiotic activity has gained the attention of researchers to produce functional fermented meat products. This review aims to overview the main strengths, weakness, opportunities and threats of fermented meat products with probiotics. Fermented meat products can be considered as a relevant matrix for the delivery of probiotics with potential health benefits. Moreover, fermented meat products produced by traditional methods are sources of probiotics that can be explored in the production of functional meat products. However, some barriers are limit the progression with these products: the complex selection process to obtain new and tailored probiotic strains, the current perception of healthiness associated with meat and meat products, and the limited application of probiotic to fermented sausages. Promising opportunities to improve the value of functional fermented meat products have been developed by exploring new meat products as functional fermented foods, improving the protection of probiotics with microencapsulation and improving the quality of meat product (reducing nitrate and nitrate salts, adding dietary fibre, and exploring the inherent antioxidant and cardioprotective activity of meat products). Attention to potential threats is also indicated such as the unclear future changes in meat and meat products consumption due to changes in consumer preferences and the presence of competitors (dairy, fruit and vegetable-based products, for instance) in more advanced stages of development and commercialization. SIGNIFICANCE AND IMPACT OF STUDY: This review provides an overview of the Strengths, Weakness, Opportunities and Threats related to the development of functional fermented meat products with probiotics. Internal and external factors that explain the current scenario and strategies to advance the production are highlighted.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Andrea C da Silva Barretto
- Department of Food Technology and Engineering, UNESP-São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Eva M Santos
- Área Académica de Química, Mineral de la Reforma, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
6
|
Oliveira Gomes B, Mesquita Oliveira C, Marins AR, Gomes RG, Feihrmann AC. Application of microencapsulated probiotic
Bifidobacterium animalis
ssp.
lactis BB‐12
in Italian salami. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Andresa Carla Feihrmann
- Program in Food Engineering State University of Maringa Parana Brazil
- Program in Food Science State University of Maringa Parana Brazil
| |
Collapse
|
7
|
Kęska P, Stadnik J, Wójciak KM, Neffe‐Skocińska K. Physico‐chemical and proteolytic changes during cold storage of dry‐cured pork loins with probiotic strains of LAB. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Karolina Maria Wójciak
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 20‐704 Lublin Poland
| | - Katarzyna Neffe‐Skocińska
- Department of Food Gastronomy and Food Hygiene Faculty of Human Nutrition and Consumer Sciences Warsaw University of Life Sciences – SGGW Nowoursynowska 159 C 02‐776 Warsaw Poland
| |
Collapse
|
8
|
Abstract
Consumer demands for foods promoting health while preventing diseases have led to development of functional foods that contain probiotic bacteria. Fermented dairy products are good substrates for probiotic delivery, but the large number of lactose intolerant people, their high fat and cholesterol content and also due to the growing vegetarianism the consumers are seeking for alternatives. Therefore, researches have been widely studied the feasibility of probiotic bacteria in non-dairy products such as fruits, vegetables, and cereals. This review describes the application of probiotic cultures in non-dairy food products.
Collapse
|
9
|
Libera J, Latoch A, Wójciak KM. Utilization of Grape Seed Extract as a Natural Antioxidant in the Technology of Meat Products Inoculated with a Probiotic Strain of LAB. Foods 2020; 9:E103. [PMID: 31963811 PMCID: PMC7022773 DOI: 10.3390/foods9010103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Grape seeds have been evaluated for use as food ingredients with stabilizing effects in meat technology. A pork neck, inoculated with probiotic monoculture (Lactobacillus rhamnosus LOCK900), was used as the matrix. The study compared the antioxidant potential of grape seed extract to sodium ascorbate. Three experimental variants of the products were prepared: With grape seed extract, with sodium ascorbate, and without additives. The meat ripened for two months, and during this period of time biophysicochemical analyses (product color, pH, number of lactic acid bacteria, content of free fatty acids, and thiobarbituric acid reactive substances) were carried out. It was found that the extract inhibited lipid hydrolysis occurring in the neck (1% of oleic acid) and limited oxidative processes (0.46 mg MDA kg-1), with efficacy similar to that of sodium ascorbate (0.9% of oleic acid and 0.53 mg MDA kg-1, respectively). No limitation of the desired lactic acid bacteria growth (approximately 7 log cfu g-1) was noticed in the meat samples with the extract. The results are optimistic because they indicate that not only is it possible to produce fermented pork neck inoculated with probiotic, but there are also no obstacles to utilizing grape seed extract as a natural antioxidant in this technology.
Collapse
Affiliation(s)
| | - Agnieszka Latoch
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland; (J.L.); (K.M.W.)
| | | |
Collapse
|
10
|
Kęska P, Stadnik J. Stability of Antiradical Activity of Protein Extracts and Hydrolysates from Dry-Cured Pork Loins with Probiotic Strains of LAB. Nutrients 2018; 10:nu10040521. [PMID: 29690547 PMCID: PMC5946306 DOI: 10.3390/nu10040521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
The application of starter cultures to improve quality and safety has become a very common practice in the meat industry. Probiotic strains of lactic acid bacteria (LAB) can also bring health benefits by releasing bioactive peptides. The aim of this work was to evaluate the stability of antiradical activity of protein extracts from LAB-inoculated dry-cured pork loins during long-term aging and evaluate their hydrolysates after simulated gastrointestinal digestion. Analyses of hydrolysates by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) were strengthened with in silico analysis. The highest antiradical activity of the protein extracts was observed after 180 days of aging. The influence of the strain used (LOCK, BAUER, or BB12) on the inactivation ability of ABTS radicals varied during long-term aging. The IC50 values indicated the higher antiradical properties of salt-soluble (SSF) compared to water-soluble fraction (WSF) of proteins. The peptides generated by in vitro digestion have MW between 700 and 4232 Da and their length ranged from 5 to 47 amino acids in a sequence where Leu, Pro, Lys, Glu, and His had the largest share. This study demonstrates that the degradation of pork muscle proteins during gastrointestinal digestion may give rise to a wide variety of peptides with antiradical properties.
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| |
Collapse
|