1
|
Zhao J, Wang D, Wang C, Lin Y, Ye H, Maung AT, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T, Xiao F. Biocontrol of Salmonella Schwarzengrund and Escherichia coli O157:H7 planktonic and biofilm cells via combined treatment of polyvalent phage and sodium hexametaphosphate on foods and food contact surfaces. Food Microbiol 2025; 126:104680. [PMID: 39638444 DOI: 10.1016/j.fm.2024.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Salmonella Schwarzengrund and Escherichia coli O157:H7 are ones of foodborne pathogens that can produce biofilms and cause serious food poisoning. Bacteriophages are an emerging antibacterial strategy used to prevent foodborne pathogen contamination in the food industry. In this study, the combined antibacterial effects of the polyvalent phage PS5 and sodium hexametaphosphate (SHMP) against both pathogens were investigated to evaluate their effectiveness in food applications. The combined treatment with phage PS5 (multiplicity of infection, MOI = 10) and 1.0% SHMP inhibited the growth of S. Schwarzengrund and E. coli O157:H7, and the viable counts of both decreased by more than 2.45 log CFU/mL. In KAGOME vegetable and fruit mixed juice, the combined treatment with PS5 (MOI = 100) and 1.0% SHMP also resulted in significant pathogen inactivation at 4 °C after 24 h. PS5 (1010 PFU/mL) and 1.0% SHMP showed stronger synergistic effects on biofilm formation and the removal of established biofilms on polystyrene plates. Additionally, we evaluated their combined effects on reducing the biofilms of S. Schwarzengrund and E. coli O157:H7 on glass tubes and cabbage leaves at 4 °C. These findings indicate the utility of this approach in the biocontrol of the planktonic and biofilm cells of S. Schwarzengrund and E. coli O157:H7 on foods and food contact surfaces.
Collapse
Affiliation(s)
- Junxin Zhao
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Haomin Ye
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Fugang Xiao
- Food and Pharmacy College, Xuchang University, Xuchang, 461000, China.
| |
Collapse
|
2
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Ashikur Rahman M, Akter S, Ashrafudoulla M, Anamul Hasan Chowdhury M, Uddin Mahamud AGMS, Hong Park S, Ha SD. Insights into the mechanisms and key factors influencing biofilm formation by Aeromonas hydrophila in the food industry: A comprehensive review and bibliometric analysis. Food Res Int 2024; 175:113671. [PMID: 38129021 DOI: 10.1016/j.foodres.2023.113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Bangladesh Fisheries Research Institute, Bangladesh
| | - Shirin Akter
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
4
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
5
|
Laltlanmawia C, Saha H, Ghosh L, Saha RK, Malla S. Identification and analysis of pathogenic bacteria causing outbreaks in Indian major carp aquaculture of Tripura. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:263-279. [PMID: 37584068 DOI: 10.1002/aah.10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE The objective of this study was to investigate bacterial disease outbreaks in Indian major carp from aquaculture systems in Tripura, India, and identify the bacterial species associated with those outbreaks. METHODS A 3-year surveillance was conducted in eight districts of Tripura, during which nine bacterial disease outbreaks were recorded. Fourteen bacterial strains isolated from diseased Indian major carp were selected and identified using phenotypic, molecular (16S ribosomal RNA gene), and phylogenetic analyses. In vitro pathogenicity studies were performed to assess the potential pathogenicity of the isolated bacteria. RESULT The selected isolated strains were preliminarily identified under the genera Aeromonas (9 isolates), Acinetobacter (1 isolate), Citrobacter (3 isolates), and Pseudomonas (1 isolate). Molecular and phylogenetic analyses confirmed the species of the isolated bacteria, including Aeromonas jandaei (strains COF_AHE09 and COF_AHE61), Aeromonas veronii (strains COF_AHE13, COF_AHE52, COF_AHE55, COF_AHE56, and COF_AHE62), Aeromonas hydrophila (strains COF_AHE51 and COF_AHE58), Acinetobacter pittii (strain COF_AHE14), Citrobacter freundii (strains COF_AHE20, COF_AHE57, and COF_AHE59), and Pseudomonas aeruginosa (strain COF_AHE54). Behavioral and clinical signs observed in the diseased fish, such as lethargy, skin hemorrhaging, ulcers, fin and tail rot, exophthalmia, distended abdomen, scale loss, and skin discoloration, indicated the presence of bacterial septicemia. The in vitro pathogenicity studies highlighted the potential role of these bacteria in disease development, especially under environmental stress. CONCLUSION This study provides valuable insights into the diversity of bacterial species associated with bacterial disease outbreaks in Indian major carp from aquaculture systems in Tripura. It serves as the first comprehensive investigation of its kind, contributing to our understanding of bacterial infections in Indian major carp.
Collapse
Affiliation(s)
- C Laltlanmawia
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Himadri Saha
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Lija Ghosh
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Ratan Kumar Saha
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| | - Supratim Malla
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, West Tripura, India
| |
Collapse
|
6
|
Singha S, Thomas R, Kumar A, Bharadwaj D, Vishwakarma JN, Gupta VK. Presence of potent inhibitors of bacterial biofilm associated proteins is the key to Citrus limon's antibiofilm activity against pathogenic Escherichia coli. BIOFOULING 2023; 39:171-188. [PMID: 37057638 DOI: 10.1080/08927014.2023.2199934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In an era of antibiotic resistance where natural antibiotic substitutes are considered essential, the antimicrobial and antibiofilm activities of Citrus limon extract on strains of pathogenic Escherichia coli isolated from pork were evaluated. The strains which form biofilms were more resistant (MIC50 = 2.5 mgml-1) compared to non-biofilm forming strains (MIC50 = 1.25 mgml-1). Use of C. limon extract at 20 mgml-1 concentration has resulted in inhibition of biofilm formation by 53.96%. Cyclobarbital, 5, 8-dimethoxycumarin, orotic acid and 3-methylsalicylhydrazide were the major phytochemicals in C. limon extract with highest docking affinities against the biofilm associated proteins in E. coli. The results of simulation studies have clearly illustrated the energy stability of the protein-ligand complexes. Absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles revealed that the phytochemicals in C. limon could be used in the drug design studies to preferentially target the specific receptors to combat biofilms associated with E. coli.
Collapse
Affiliation(s)
- Songeeta Singha
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Rajendran Thomas
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Abinash Kumar
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | - Devarshi Bharadwaj
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| | | | - Vivek Kumar Gupta
- Food Quality Control Laboratory, ICAR-National Research Centre on Pig, Assam, Guwahati, India
| |
Collapse
|
7
|
Dhanapala PM, Kalupahana RS, Kalupahana AW, Wijesekera D, Kottawatta SA, Jayasekera NK, Silva-Fletcher A, Jagoda SDS. Characterization and Antimicrobial Resistance of Environmental and Clinical Aeromonas Species Isolated from Fresh Water Ornamental Fish and Associated Farming Environment in Sri Lanka. Microorganisms 2021; 9:2106. [PMID: 34683427 PMCID: PMC8537582 DOI: 10.3390/microorganisms9102106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as the most abundant species (75.8%) followed by Aeromonashydrophila (9.3%), Aeromonas caviae (5%), Aeromonas jandaei (4.3%), Aeromonas dhakensis (3.7%), Aeromonas sobria (0.6%), Aeromonas media (0.6%), and Aeromonas popoffii (0.6%). Susceptibility to thirteen antimicrobials was determined and antimicrobial resistance frequencies were: amoxicillin (92.5%), enrofloxacin (67.1%), nalidixic acid (63.4%), erythromycin (26.1%), tetracycline (23.6%), imipenem (18%), trimethoprim-sulfamethoxazole (16.8%), and gentamicin (16.8%). Multi-drug resistance (MDR) was widespread among the isolates (51.6%, 83/161) with 51.6% (63/122) A. veronii isolates being MDR. In addition, 68.3% of isolates had multiple antibiotic resistance (MAR) indexes higher than 0.2, suggesting that they originated from a high-risk source of contamination where antimicrobials are often used. In all, 21.7% isolates carried class 1 integrons, with 97.1% having gene cassettes, while there were 12 isolates carrying class 2 integron gene cassettes. Our findings highlight that the aquatic environment and ornamental fish act as reservoirs of multidrug resistant Aeromonas spp. and underline the need for a judicious use of antimicrobials and timely surveillance of antimicrobial resistance (AMR) in aquaculture.
Collapse
Affiliation(s)
- Pavithra M. Dhanapala
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Ruwani S. Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Anil W. Kalupahana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - D.P.H. Wijesekera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| | - Sanda A. Kottawatta
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (R.S.K.); (S.A.K.)
| | - Niromi K. Jayasekera
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | | | - S.S.S. de S. Jagoda
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; (P.M.D.); (A.W.K.); (D.P.H.W.)
| |
Collapse
|
8
|
Solaiman S, Micallef SA. Aeromonas spp. diversity in U.S. mid-Atlantic surface and reclaimed water, seasonal dynamics, virulence gene patterns and attachment to lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146472. [PMID: 34030273 DOI: 10.1016/j.scitotenv.2021.146472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/14/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Aeromonas, a ubiquitous taxon in water environments, is emerging as a foodborne pathogen of concern that remains understudied and under-reported. We evaluated the distribution of 331 Aeromonas spp. isolates collected from irrigation water over one year and characterised their virulence profile, attachment and ability to persist on lettuce. Water sources included non-tidal and tidal river, farm pond and reclaimed water. Twenty Aeromonas species were identified; A. veronii, A. hydrophila and A. jandaei predominated in all water types and seasons, comprising ~63% of isolates. Species distribution was most affected by water type. The highest and lowest diversity were detected in river and pond water, respectively. A. hydrophila and A. veronii ranked highest in frequency in fresh river and reclaimed water, while A. jandaei ranked first in pond water. Only two isolates carried all five virulence genes tested, while 46% of A. hydrophila (n = 50), 54% of A. veronii (n = 61) and 50% of A. jandaei (n = 32) isolates harboured multiple enterotoxin genes. Detection of alt and ast genes was more likely in summer collections, while ast detection was less likely in tidal brackish river and pond water isolates. Season was a factor in attachment to polystyrene, being strongest in spring isolates. The gene flaA was associated with strong attachment and was more likely to be detected in non-tidal fresh river isolates. A. hydrophila and A. jandaei isolates persisted on lettuce leaves for 24 h, but populations dwindled over 120 h, while loosely and strongly attached cells of A. veronii isolates persisted for 120 h. This study provides comprehensive data on Aeromonas species distribution and environmental traits. The associations revealed among diversity, water type, season, virulence factors and phyllosphere attachment capacity can inform agricultural water standards in novel ways. Moreover, understanding Aeromonas-plant interactions is an important step in advancing food safety of fruit and vegetables.
Collapse
Affiliation(s)
- Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Donkadokula NY, Naz I, Kola AK, Saroj D. Assessment of the aerobic glass beads fixed biofilm reactor (GBs-FBR) for the treatment of simulated methylene blue wastewater. Sci Rep 2020; 10:20705. [PMID: 33244058 PMCID: PMC7692555 DOI: 10.1038/s41598-020-77670-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
The present research is focused on the application of glass beads (GBs) in fixed biofilm reactor (FBR) for the treatment of simulated methylene blue (MB) wastewater for 9 weeks under aerobic conditions. The COD of MB wastewater showed a reduction of 86.48% from 2000 to 270.4 mg/L, and BOD was declined up to 97.7% from 1095.5 to 25.03 mg/L. A drastic increase in the pH was observed until the 3rd week (8.5 to 8.28), and later, marginal changes between 8.30 ± 0.02 were noticed. A dramatic fluctuation was observed in ammonia concentration which increased (74.25 mg/L) up till the 2nd week, and from the 3rd week it started declining. In the 9th week, the ammonia concentration dropped to 16.5 mg/L. The color intensity increased significantly up till the 2nd week (259,237.46 Pt/Co) of the experiment and started decreasing slowly thereafter. The SEM-EDX analysis has shown the maximum quantity of carbon content in the GBs without biofilm, and then in the GB samples of 1st, and 9th-week old aerobic biofilms. Furthermore, Raman spectroscopy results revealed that the 9th-week GBs has a fine and strong MB peak and matched with that of the MB stock solution. Overall, the results have shown that the GBs filter media were suitable for the development of active biofilm communities for the treatment of dye wastewater. Thus, GBs-FBR system can be used for wastewater treatment to solve the current problem of industrial pollution in many countries and to protect the aquatic environment from dye pollution caused by the textile industry.
Collapse
Affiliation(s)
- Naresh Yadav Donkadokula
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, Telangana, India
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Iffat Naz
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- Department of Biology, Scientific Unit, Deanship of Educational Services, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Anand Kishore Kola
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
10
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
11
|
Biofilm-Producing Ability and Antibiotic Resistance Pattern of Pathogenic Strains of Aeromonas hydrophila. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.97640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Dias C, Borges A, Saavedra MJ, Simões M. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. J Glob Antimicrob Resist 2017; 12:227-234. [PMID: 28951073 DOI: 10.1016/j.jgar.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics. METHODS The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement. RESULTS All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m2). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal. CONCLUSIONS This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections.
Collapse
Affiliation(s)
- Carla Dias
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria José Saavedra
- CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Department of Veterinary Sciences, School of Agriculture and Veterinary Science, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|