1
|
Rothy J, Saikia A, Koti K, Hasan M, Narvaez-Bravo C, Prieto N, Rodas-Gonzalez A. Enhancing shelf life of bison meat using CO 2/N 2 modified atmosphere master bag packaging system with oxygen scavengers. Meat Sci 2025; 224:109780. [PMID: 40010130 DOI: 10.1016/j.meatsci.2025.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to assess the impact of CO2/N2 modified atmosphere master bags (MB) and the incorporation of oxygen scavengers on color stability, oxidation development, and microbial growth in bison meat during storage and retail exposition. The utilization of MBs with oxygen scavengers (MBOSC) led to a substantial decrease in residual oxygen levels to 0.11 % over a 14-d storage period, compared to MBs with no oxygen scavengers (2.45 %; MBNoSC) (P < 0.01). Throughout the storage and retail display simulation, MBOSC consistently increased a*, b*, and Chroma values, and with diminished Hue values compared to MBNoSC (P < 0.01). Also, MBOSC showed lower levels of lipid and protein oxidation compared to the MBNoSC samples during storage (P < 0.01). Except for the psychrophilic, other bacteria indicators remained unaffected by the MB type. Thus, MBOSC proved more effective than MBNoSC in extending the shelf life of bison meat during storage and retail display.
Collapse
Affiliation(s)
- J Rothy
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - A Saikia
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - K Koti
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M Hasan
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - A Rodas-Gonzalez
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
2
|
Cropp MS, Sebranek JG, Dickson JS, Walla AM, Houser TA, Prusa KJ, Unruh DA, Tarté R. Effect of Nitrite-Embedded Packaging Film on Growth of Listeria monocytogenes in Nitrite-free and Conventionally-cured Bologna Sausage. J Food Prot 2024; 87:100361. [PMID: 39278624 DOI: 10.1016/j.jfp.2024.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Listeria monocytogenes is a pathogen frequently associated with ready-to-eat (RTE) meat and poultry products. Nitrite is a key antimicrobial additive that can offer some degree of protection against L. monocytogenes when included in meat product formulations. The objectives of this study were to determine the potential of nitrite-embedded film to affect the growth of L. monocytogenes following postthermal processing of conventionally-cured and nitrite-free bologna. Two bologna treatment formulations, a conventionally-cured control formulation (CON) and a nitrite-free formulation (UCC), were manufactured, packaged in conventional (CF) or nitrite-embedded (NEF) film, inoculated with 3.5 log CFU/cm2 of a cocktail of L. monocytogenes strains, and stored at 10 ± 1 °C. CON-NEF and UCC-NEF treatments had significantly slower (P < 0.05) growth of L. monocytogenes than CON-CF and UCC-CF, with populations in UCC-CF (which contained no nitrite) increasing by 3.4 logs after 10 d of storage in UCC-CF and 3.6 logs after 50 d in CON-CF (which had formulated nitrite only), while in the NEF-packaged samples, with or without formulated nitrite, they did not exceed the inoculum level until after day 40. Initial (day 0) residual nitrite was significantly greater (P < 0.05) in the control formulation. Packaging in NEF, however, resulted in an increase of 27-28 ppm by day 3, regardless of formulation, after which it decreased rapidly. Results suggest NEF can be used as a post-lethality antimicrobial intervention in food safety intervention strategies, in both cured and uncured processed meat products.
Collapse
Affiliation(s)
- Michael S Cropp
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA
| | - Joseph G Sebranek
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA
| | - James S Dickson
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA
| | - Angela M Walla
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA; Department of Animal and Food Sciences, Texas Tech University, 304 Experimental Sciences Building, 2500 Broadway Street, Lubbock, TX 79409, USA
| | - Terry A Houser
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA
| | - Kenneth J Prusa
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA
| | - Daniel A Unruh
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA
| | - Rodrigo Tarté
- Department of Animal Science, Iowa State University, 215 Meats Laboratory, 914 Stange Road, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Cropp MS, Tarté R, Prusa KJ, Dickson JS, Shaw AM, Houser TA, Crowley RI, Reever LM, Sebranek JG. Impact of nitrite-embedded packaging film on quality and sensory attributes of alternatively-cured and nitrite-free bologna. Meat Sci 2023; 204:109289. [PMID: 37531898 DOI: 10.1016/j.meatsci.2023.109289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
The objectives were to determine the effects of post-thermal processing nitrite-embedded film (NEF) packaging on the quality attributes of alternatively-cured (nitrite from celery juice powder (AC)) and nitrite-free bologna. Attributes evaluated included lipid oxidation, instrumental color, pigment concentration, and sensory properties such as cured meat flavor, aroma, and color. Three bologna formulations, each packaged with two packaging films were produced. A conventionally-cured control formulation (with nitrite from sodium nitrite; CON), a nitrite-free formulation (UCC), and an alternatively cured formulation (nitrite from cultured celery juice powder; AC) were packaged in conventional (CF) or nitrite-embedded (NEF) film. Instrumental a* values (measured during both light and dark storage at intervals of 7 or 14 days over 126 days of storage) and cured pigment concentration (measured at 14-day intervals over 84 days of storage) were significantly greater (P < 0.05) for the UCC-NEF treatment compared to its conventional film counterpart, UCC-CF. No significant differences (P > 0.05) for lipid oxidation (TBARS values) were observed with NEF. Trained sensory panelists, who evaluated samples at 14-day intervals over 70 days of storage, found significantly greater (P < 0.05) cured aroma, cured flavor, pink color and less off-flavor for uncured bologna packaged in NEF compared to conventional film. For the uncured bologna formulation, NEF packaging provided cured meat attributes comparable to the control formulation that included nitrite. This is the first time that cured aroma and flavor have been observed when nitrite from packaging film is added to a cooked meat product under anaerobic conditions.
Collapse
Affiliation(s)
- Michael S Cropp
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Rodrigo Tarté
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - Kenneth J Prusa
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - James S Dickson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - Angela M Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Terry A Houser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Rachel I Crowley
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - Leah M Reever
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - Joseph G Sebranek
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Hasan MM, Chaudhry MMA, Erkinbaev C, Paliwal J, Suman SP, Rodas-Gonzalez A. Application of Vis-NIR and SWIR spectroscopy for the segregation of bison muscles based on their color stability. Meat Sci 2022; 188:108774. [DOI: 10.1016/j.meatsci.2022.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
|
5
|
Denzer ML, Mafi GG, VanOverebeke DL, Ramanathan R. Repackaging Nitrite-Embedded Dark-Cutting Steak in Aerobic Polyvinyl Chloride Film Decreases Surface Redness. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The overall goal was to evaluate the effects of repackaging nitrite-embedded dark-cutting steaks in polyvinylchloride (PVC) film on surface color. Dark-cutting beef strip loins (n = 8; pH = 6.39) and USDA Low Choice beef strip loins (USDA Choice, n = 6; pH = 5.56) were selected at a commercial packing plant. Dark-cutting loins were bisected and randomly assigned to nonenhanced dark-cutting and enhanced dark-cutting with glucono delta-lactone and rosemary treatments. USDA Choice and nonenhanced dark-cutting steaks were vacuum packaged (VP) and served as controls, whereas enhanced dark-cutting steaks were packed in nitrite-embedded packaging (NP). Steaks from nonenhanced USDA Choice VP, nonenhanced dark-cutting VP, and enhanced dark-cutting NP loins were randomly assigned to 3, 6, or 9 d of dark storage.Following dark storage, steaks were repackaged in PVC and displayed for 6 d at 2°C. Instrumental color, visual color, and aerobic plate count were evaluated for all steaks. Enhanced dark-cutting steaks in NP increased (P < 0.05) a* values compared with USDA Choice and nonenhanced dark-cutting VP during 24 h of dark storage. Enhanced dark-cutting steaks packaged in NP had greater a* and L* values (P < 0.05) than nonenhanced dark-cutting VP steaks during dark storage. Upon repackaging the enhanced dark-cutting steaks from NP, nitric oxide myoglobin decreased (P < 0.05) during the first 12 h of display. Loss of nitric oxide myoglobin corresponds with a darker red appearance, increased surface discoloration, and decreased a* values.There were no differences (P > 0.05) in aerobic plate count between enhanced dark-cutting NP steaks and nonenhanced dark-cutting VP steaks after repackaging. In conclusion, NP improved surface redness; however, repackaging enhanced dark-cutting from NP steaks in PVC decreased color stability and redness of dark-cutting beef.
Collapse
Affiliation(s)
- Morgan L. Denzer
- Oklahoma State University Department of Animal and Food Sciences
| | - Gretchen G. Mafi
- Oklahoma State University Department of Animal and Food Sciences
| | | | | |
Collapse
|
6
|
Hasan MDM, Rashid MU, Suman SP, Perreault H, Paliwal J, Rodas-González A. Tandem Mass Tag Labeling-Based Analysis to Characterize Muscle-Specific Proteome Changes during Postmortem Aging of Bison Longissimus Lumborum and Psoas Major Muscles. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of the study was to examine the variations in sarcoplasmic proteomes of bison longissimus lumborum (LL) and psoas major (PM) muscles during postmortem aging utilizing tandem mass tag (TMT) isobaric labeling coupled with liquid chromatography mass-spectrometry (LC-MS/MS) for the categorization of muscles with muscle-specific inherent color stability. A total of 576 proteins were identified (P < 0.05) in both bison LL and PM muscles, where 97 proteins were identified as differentially abundant (fold change > 1.5, P < 0.05) from the three comparisons between muscles during postmortem aging periods (PM vs LL at 2 d, 7 d and 14 d). Among those proteins, the most important protein groups based on functions are related to electron transport chain (ETC) or oxidative phosphorylation, tricarboxylic acid cycle (TCA), ATP transport, carbohydrate metabolism, fatty acid oxidation, chaperones, oxygen transport, muscle contraction, calcium signaling, and protein synthesis. In PM, most of the proteins from ETC, TCA cycle, fatty acid oxidation, ATP and oxygen transport, and muscle contraction were more abundant or exhibited increased expression during aging compared to LL. On the other hand, the proteins involved in carbohydrate metabolism, chaperone function and protein synthesis mostly exhibited decreased expression in PM muscle relative to LL. These results clearly demonstrate that the proteins associated with oxidative metabolism showed increased expression in PM muscles. This indicates that oxidative damage or subsequent color deterioration resulted in bison PM muscles being attacked by the reactive oxygen species produced during those metabolic process. In contrast, proteins involved in glycolysis and chaperone activity exhibited a decrease in expression in bison PM muscles, resulting decline in color stability compared with LL. Because glycolytic enzymes and chaperones maintain oxidative and/or color stability by producing reducing equivalents in glycolytic pathway and with the protein folding ability of chaperones, respectively in LL muscles.
Collapse
|
7
|
Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chem 2021; 374:131709. [PMID: 34875439 DOI: 10.1016/j.foodchem.2021.131709] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/31/2023]
Abstract
Functional bioplastic packaging was produced from thermoplastic starch (TPS) with nitrite (1-5%) and polybutylene adipate terephthalate (PBAT) (PBAT/TPS at 30/70 and 40/60) via blown-film extrusion. TPS-nitrite interaction increased thermal destabilization and decreased α-relaxation temperature of TPS phase, indicating improved plasticization and disruption of starch granules. Nitrite modified C=O bonding of PBAT and improved compatibility with TPS networks, resulting in compact microstructures that reduced oxygen and water vapor permeability. Films containing nitrite showed up to 39.7% decrease (p≤0.05) in mechanical properties while effectively improving and stabilizing redness of vacuum-packaged pork during storage for 12 days. Nitrite release led to up to 0.66 ppm residual nitrite, which corresponded to formation of nitrosyl myoglobin (3.4-9.6 ppm), and effectively reduced total viable count, lactic acid bacteria and yeast and molds (p≤0.05). Stabilized lipid components also increased with increasing nitrite. Novel nitrite-containing biodegradable film enhanced functional properties and retained quality of packaged meat.
Collapse
|
8
|
Hasan MM, Sood V, Erkinbaev C, Paliwal J, Suman S, Rodas-Gonzalez A. Principal component analysis of lipid and protein oxidation products and their impact on color stability in bison longissimus lumborum and psoas major muscles. Meat Sci 2021; 178:108523. [PMID: 33895432 DOI: 10.1016/j.meatsci.2021.108523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
The study aims were to compare lipid (malondialdehyde [MDA], 4-hydroxy-2-nonenal [HNE]) and protein (carbonyl content [CAR]) oxidation products between two bison muscles (longissimus lumborum [LL] and psoas major [PM]) at different aging and retail display time and determine their influence on muscle color stability. Regardless of the aging and retail display time, LL showed greater redness (a* value; P = 0.04) and lower surface discoloration (P < 0.01) than PM as well as LL exhibited lower MDA, HNE, and CAR content compared to PM (P < 0.05). In both muscles, MDA showed the highest correlation to a* (r = -0.78; P < 0.01) and discoloration (rs = 0.82; P < 0.01) scores, particularly in PM muscle compared to LL muscle. In conclusion, the principal component analysis revealed 4 distinct color deterioration clusters within steaks displayed at d 4 according to the muscle and aging time, and MDA critically influences color deterioration patterns in bison muscles.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vipasha Sood
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chyngyz Erkinbaev
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jitendra Paliwal
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Surendranath Suman
- Animal and Food Sciences, University of Kentucky, Lexington, KY 40546-0215, United States
| | | |
Collapse
|
9
|
Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020; 9:E1416. [PMID: 33036478 PMCID: PMC7601710 DOI: 10.3390/foods9101416] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
This review describes the effects of processing and preservation technologies on sensory and nutritional quality of meat products. Physical methods such as dry aging, dry curing, high pressure processing (HPP), conventional cooking, sous-vide cooking and 3D printing are discussed. Chemical and biochemical methods as fermentation, smoking, curing, marination, and reformulation are also reviewed. Their technical limitations, due to loss of sensory quality when nutritional value of these products is improved, are presented and discussed. There are several studies focused either on the nutritional or sensorial quality of the processed meat products, but more studies with an integration of the two aspects are necessary. Combination of different processing and preservation methods leads to better results of sensory quality; thus, further research in combinations of different techniques are necessary, such that the nutritional value of meat is not compromised.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain;
| | - Rasmi Janardhanan
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - Francisco C. Ibañez
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - María José Beriain
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| |
Collapse
|
10
|
Holman BWB, Kerry JP, Hopkins DL. Meat packaging solutions to current industry challenges: A review. Meat Sci 2018; 144:159-168. [PMID: 29724528 DOI: 10.1016/j.meatsci.2018.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Many advances have occurred in the field of smart meat packaging, and the potential for these to be used as tools that respond to challenges faced by industry is exciting. Here, we review packaging solutions to several immediate concerns, encompassing dark cutting, purge and yield losses, product traceability and provenance, packaging durability, microbial spoilage and safety, colour stability, environmental impacts, and the preservation of eating quality. Different active and intelligent packaging approaches to each of these were identified and are discussed in terms of their usefulness - to processors, retailers and/or consumers. From this, it became apparent that prior to selecting a packaging solution, industry should first define their criteria for success (e.g. How much purge is too much? What is a reasonable shelf-life to facilitate product turnover? Is the customer willing to pay for this?), and understand that packaging is not the sole solution, but acts as part of a holistic response to these issues.
Collapse
Affiliation(s)
- Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, NSW 2794, Australia.
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, National University of Ireland, Cork, Ireland
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, NSW 2794, Australia
| |
Collapse
|
11
|
Ramanathan R, Mitacek RM, Billups SD, Jadeja R, Pfeiffer MM, Mafi GG, VanOverbeke DL. Novel nitrite-embedded packaging improves surface redness of dark-cutting longissimus steaks. Transl Anim Sci 2018; 2:135-143. [PMID: 32704697 PMCID: PMC7200426 DOI: 10.1093/tas/txy006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
The objective of this research was to determine the effects of nitrite-embedded/FreshCase packaging on lean color of dark-cutting beef. Eight dark-cutting (pH > 6.0) and eight USDA Low Choice (normal-pH; mean pH = 5.6) beef strip loins (longissimus lumborum) were selected 3 day after harvest. Each dark-cutting loin was sliced into five 2.5-cm thick steaks and randomly assigned to 1) dark-cutting steak packaged in polyvinyl chloride film (PVC) overwrap, 2) dark-cutting steak packaged in nitrite-embedded film, 3) dark-cutting steaks dipped in 0.2% rosemary solution and packaged in nitrite-embedded film, and 4) dark-cutting steak dipped in deionized water and packaged in nitrite-embedded film. The fifth dark-cutting steak was used to determine pH and proximate composition. Normal-pH choice loins were used as a control and each loin was randomly assigned to either PVC overwrap for retail display or to determine pH and proximate composition. Packages were placed in coffin-style retail display cases under continuous fluorescent lighting for 3 days. A HunterLab MiniScan XE Plus spectrophotometer was utilized to characterize steak color every 24 h. There was a significant treatment × storage time interaction (P < 0.05) for a* values and nitric oxide myoglobin formation. On days 1, 2, and 3 of the display, nitrite-embedded treatment improved (P < 0.05) redness compared to other dark-cutting steaks in PVC. A 45% increase in redness (P < 0.05) was observed for nitrite-embedded rosemary treatment over dark-cutting steak in PVC on day 3 of display. Nitric oxide myoglobin formation on day 0 was less for all dark-cutting steaks in nitrite-embedded packaging. Metmyoglobin content was greater (P < 0.05) on day 0 for dark-cutting steaks packaged in nitrite-embedded treatments than dark-cutting steaks in PVC. However, metmyoglobin level in dark-cutting steaks packaged in nitrite-embedded treatments decreased (P < 0.05) on day 1 compared with day 0. Dark-cutting steaks packaged in PVC had greater (P < 0.05) L* values on day 0 than other dark-cutting steaks in nitrite-embedded packaging. Conversely, on days 1, 2, and 3, there were no differences (P > 0.05) in L* values between dark-cutting treatments. Dark-cutting steaks in nitrite-embedded packaging had lower total plate count (P < 0.05) than dark-cutting steak packaged in PVC. The current research indicated that nitrite-embedded packaging has the potential to improve surface color of dark-cutting beef.
Collapse
Affiliation(s)
| | - Rachel M Mitacek
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Sabra D Billups
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Ravi Jadeja
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Morgan M Pfeiffer
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Gretchen G Mafi
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | | |
Collapse
|