1
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
2
|
Muñoz-Shugulí C, Rodríguez-Mercado F, Mascayano C, Herrera A, Bruna JE, Guarda A, Galotto MJ. Development of Inclusion Complexes With Relative Humidity Responsive Capacity as Novel Antifungal Agents for Active Food Packaging. Front Nutr 2022; 8:799779. [PMID: 35059427 PMCID: PMC8764934 DOI: 10.3389/fnut.2021.799779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (β-CD) as the main candidate. In addition, β-CD could act as a relative humidity-responsive nanoparticle. In this regard, the aim of this study was to develop inclusion complexes based on β-CD and AITC as relative humidity-responsive agents, which can be used in the design of active food packaging materials. Methods: Two different β-CD:AITC inclusion complexes (2:1 and 1:1 molar ratios) were obtained by the co-precipitation method. Entrapment efficiency was determined by gas chromatography, while inclusion complexes were characterized through thermal, structural, and physicochemical techniques. Antifungal capacity of inclusion complexes was determined in a headspace system. Furthermore, the AITC release from inclusion complexes to headspace at different percentages of relative humidity was evaluated by gas chromatography, and this behavior was related with molecular dynamic studies. Key Findings and Conclusions: The entrapment efficiency of inclusion complexes was over to 60%. Two coexisting structures were proposed for inclusion complexes through spectroscopic analyses and molecular dynamic simulation. The water sorption capacity of inclusion complexes depended on relative humidity, and they exhibited a strong fungicide activity against Botrytis cinerea. Furthermore, the AITC release to headspace occurred in three stages, which were related with changes in β-CD conformational structure by water sorption and the presence of the different coexisting structures. In addition, a strong influence of relative humidity on AITC release was evidenced. These findings demonstrate that β-CD:AITC inclusion complexes could be used as potential antifungal agents for the design of food packaging materials, whose activity would be able to respond to relative humidity changes.
Collapse
Affiliation(s)
- Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carolina Mascayano
- Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Andrea Herrera
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Julio E Bruna
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| | - María J Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Department of Food Science and Technology, Technological Faculty, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
3
|
Torrijos R, Nazareth TM, Calpe J, Quiles JM, Mañes J, Meca G. Antifungal activity of natamycin and development of an edible film based on hydroxyethylcellulose to avoid Penicillium spp. growth on low-moisture mozzarella cheese. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Corrêa JAF, Santos JVGD, Evangelista AG, Pinto ACSM, Macedo REFD, Luciano FB. Combined application of phenolic acids and essential oil components against Salmonella Enteritidis and Listeria monocytogenes in vitro and in ready-to-eat cooked ham. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|
6
|
Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis, and Aspergillus flavus growth. Food Res Int 2019; 128:108786. [PMID: 31955757 DOI: 10.1016/j.foodres.2019.108786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The goals of this study were to determine the efficacy of allyl isothiocyanate (AITC) against the growth of A. flavus and Aflatoxin B1 (AFB1) production as well as to evaluate changes in the transcriptome profile when colonizing maize. A. flavus was inoculated in potato dextrose agar (PDA), the plates were placed inside glass jars and the mycelial growth (MG) was monitored for 7 d. Likewise, maize grains were contaminated with A. flavus in glass jars of 1 L and treated with 0.125, 0.25, 0.5, 1 and 5 µL of AITC. The moisture content (MC) of grains was 15 and 21%. After 7 days of storage, the MG was significantly reduced in doses higher than 0.125 µL/L of AITC. All doses of AITC reduced significantly the fungal growth and AFB1 production in maize after 30 d, regardless of MC. The transcriptional changes caused by AITC treatment showed significant overexpression for environmental and global transcription factors. These results suggest that AITC could be used as a fumigant to avoid the growth of A. flavus and the production of AFB1, moreover, confirm transcriptional alteration of genes involved in AFB1 and other processes key for normal fungal growth and development.
Collapse
|
7
|
Nazareth TDM, Quiles JM, Torrijos R, Luciano FB, Mañes J, Meca G. Antifungal and antimycotoxigenic activity of allyl isothiocyanate on barley under different storage conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Development of a Bioactive Sauce Based on Oriental Mustard Flour with Antifungal Properties for Pita Bread Shelf Life Improvement. Molecules 2019; 24:molecules24061019. [PMID: 30875724 PMCID: PMC6471135 DOI: 10.3390/molecules24061019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced in the secondary metabolism of fungus belonging to the genus Aspergillus and Penicillium. In this study, the employment of oriental mustard flour (OMF) as an ingredient in a packaged sauce was evaluated for the generation in situ of the antimicrobial compound allyl isothiocyanate (AITC) in order to preserve pita bread contaminated with Penicillium verrucosum VTT D-01847, an OTA producer, in an active packaging system. Four different concentrations (8, 16, 33 and 50 mg/g) were tested. Mycelium formation, mycotoxin production, AITC absorbed by the food matrix, and volatilization kinetics were studied for each concentration. The results obtained were compared with bread treated with the commercial additive calcium propionate (E-282). The results showed a shelf life increase of two and three days with the employment of 33 and 50 mg/g of OMF, with a significant reduction of the fungal population (3.1 and 5.7 logs, respectively) in comparison with the control experiment. The use of 16 and 33 mg/g of OMF in the sauce formulation decreased the concentration of OTA in the bread samples while no OTA production was detected employing 50 mg/g of OMF.
Collapse
|