1
|
Rouhi E, Sadeghi A, Jafari SM, Abdolhoseini M, Assadpour E. Effect of the controlled fermented quinoa containing protective starter culture on technological characteristics of wheat bread supplemented with red lentil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2193-2203. [PMID: 37273558 PMCID: PMC10232387 DOI: 10.1007/s13197-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/06/2022] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
Selected antifungal lactic acid bacteria (LAB) isolated from mature spontaneous quinoa sourdough was used as potential starter culture to produce loaf wheat bread containing controlled fermented quinoa (CFQ) supplemented with red lentil (RL) flour. Phylogenetic evolutionary tree led to the identification of Enterococcus hirae as the selected LAB isolate. Furthermore, there was no significant difference (P > 0.05) between bread containing CFQ and control in terms of hardness. The highest loaf specific volume and overall acceptability were also observed in control sample and wheat bread containing CFQ + RL, respectively. Meanwhile, the rate of surface fungal growth on wheat bread enriched with CFQ was significantly lower than the other samples. In accordance with a non-linear multivariable model, positive and negative correlations were observed between porosity and specific volume (+ 0.79), and also specific volume and crumb hardness (- 0.70), respectively. Accordingly, CFQ can be used as bio-preservative to produce clean-label supplemented wheat bread.
Collapse
Affiliation(s)
- Elham Rouhi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739 Islamic Republic of Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739 Islamic Republic of Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Abdolhoseini
- Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Islamic Republic of Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Shang J, Xie S, Yang S, Duan B, Liu L, Meng X. Steamed Multigrain Bread Prepared from Dough Fermented with Lactic Acid Bacteria and Its Effect on Type 2 Diabetes. Foods 2023; 12:2319. [PMID: 37372530 DOI: 10.3390/foods12122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Multigrain products can prevent the occurrence of chronic noninfectious diseases such as hyperglycemia and hyperlipidemia. In this study, multigrain dough fermented by lactic acid bacteria (LAB) was used for the preparation of good-quality steamed multigrain bread, and its effects on type 2 diabetes were investigated. The results showed that the multigrain dough fermented with LAB significantly enhanced the specific volume, texture, and nutritional value of the steamed bread. The steamed multigrain bread had a low glycemic index and was found to increase liver glycogen and reduce triglyceride and insulin levels, while improving oral glucose tolerance and blood lipid levels in diabetic mice. The steamed multigrain bread made from dough fermented with LAB had comparable effects on type 2 diabetes to steamed multigrain bread prepared from dough fermented without LAB. In conclusion, multigrain dough fermentation with LAB improved the quality of the steamed bread while preserving its original efficacy. These findings provide a novel approach to the production of functional commercial foods.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuiqi Xie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bofan Duan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Quinoa Sourdough Fermented with Lactobacillus plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactobacillus plantarum ATCC 8014 was used to ferment quinoa flour, in order to evaluate its influence on the nutritional and rheological characteristics of both the sourdough and muffins. The quantification of carbohydrates and organic acids was carried out on a HPLC-RID system (high-performance liquid chromatography coupled with with refractive index detector), meanwhile HPLC-UV-VIS (high-performance liquid chromatography coupled with UV-VIS detector), AAS (Atomic absorption spectrophotometry), aluminum chloride colorimetric assay, Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) methods were used to determine folic acid, minerals, flavonoids, total phenols, and radical scavenging activity, respectively. Two types of sourdough were used in this study: quinoa sourdough fermented with L. plantarum ATCC 8014 and quinoa sourdough spontaneous fermented. The first one influenced the chemical composition of muffins in terms of decreased content of carbohydrates, higher amounts of both organic acids and folic acid. Furthermore, higher amounts of flavonoids, total phenols and increased radical scavenging activity were recorded due to the use of Lactobacillus plantarum ATCC 8014 strain. These results indicate the positive effect of quinoa flour fermentation with the above strain and supports the use of controlled fermentation with lactic acid bacteria for the manufacturing of gluten free baked products.
Collapse
|