1
|
Zeng X, Wang Y, Shen X, Wang H, Xu ZL. Application of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry for Identification of Foodborne Pathogens: Current Developments and Future Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22001-22014. [PMID: 39344132 DOI: 10.1021/acs.jafc.4c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Foodborne pathogens have gained sustained public attention, exerted significant pressure on food manufacturers, and posed serious health risks to human. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been employed for quick and accurate identification of microorganisms in the prevention of foodborne epidemics in recent years. Herein, we first summarize the principle of MALDI and its workflow for foodborne pathogens. Subsequently, we review the recent progress and applications of MALDI-TOF MS in foodborne pathogen determination. Additionally, we outline the expanded utilization of MALDI-based techniques for the identification of closely related species. We also assess the current gaps and propose possible solutions to address the existing challenges. MALDI-TOF MS is a promising biotool for rapid and accurate identification of foodborne microbes at the species and genus level in food samples. Database expansion and direct quantification of spoilage microbes are two promising areas for future progress in MALDI-TOF MS applications.
Collapse
Affiliation(s)
- Xi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Institute of Food Inspection, Guangzhou 511400, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Silva JJ, Fungaro MHP, Soto TS, Taniwaki MH, Iamanaka BT. Low-cost, specific PCR assays to identify the main aflatoxigenic species of Aspergillus section Flavi. METHODS IN MICROBIOLOGY 2022; 196:106470. [PMID: 35447279 DOI: 10.1016/j.mimet.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Aflatoxins are fungal metabolites that are present as contaminants in food globally. Most aflatoxigenic species belong to Aspergillus section Flavi, and the main ones are grouped in the A. flavus clade, where many cryptic species that are difficult to discriminate are found. In this study, we investigated inter- and intraspecific diversity of the A. flavus clade to develop low-cost, species-specific PCR assays for identifying aflatoxigenic species. A total of 269 sequences of the second largest subunit of RNA polymerase II (RPB2) locus were retrieved from GenBank, and primer pairs were designed using data mining to identify A. flavus, A. parasiticus, and A. novoparasiticus. Species-specific amplicons of approximately 620, 350, and 860 bp enabled identification of target species as A. flavus, A. parasiticus, and A. novoparasiticus, respectively.
Collapse
Affiliation(s)
- Josué J Silva
- Institute of Food Technology - ITAL, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
3
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Rahman HU, Yue X, Ren X, Zhang W, Zhang Q, Li P. Multiplex PCR assay to detect Aspergillus, Penicillium and Fusarium species simultaneously. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1939-1950. [PMID: 32897821 DOI: 10.1080/19440049.2020.1810860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A wide variety of mycotoxins is produced by mycotoxigenic fungi and naturally contaminates food and feed products worldwide. Synergistic effects of multi-toxins are potentially more harmful than exposure to a single compound and can induce acute and chronic toxicity to animals and humans. The aim of the present study is to timely and simultaneously identify the multiple mycotoxigenic fungi capable of causing synergistic toxicity to improve the safety level of food and feedstuff. Here, a multiplex polymerase chain reaction assay was developed for simultaneous detection of mycotoxigenic fungi belonging to the genera Aspergillus, Fusarium and Penicillium. Three pairs of genus-specific primers were designed based on internal transcribed spacer (ITS) sequences of Aspergillus and Penicillium, and Elongation factor 1 alpha (EF- 1α) of Fusarium. Amplicons of 170, 750 and 490 bp respectively for the corresponding primer pairs were detected; thus amplicon length is diagnostic for the individual fungal genus. The sensitivity of the developed method was tested with genomic DNA obtained from mould pure cultures and artificially contaminated maize grain powder. The sensitivity result showed that spore concentrations in the contaminated maize grain powder of 102 spores/mL were detected without prior incubation. This result suggests that the developed mPCR assay would allow a rapid, specific and simultaneous detection of various mycotoxigenic potential fungi based on the occurrence and size of the amplification products and thus to estimate the multi-mycotoxins contamination potential in food and feedstuff.
Collapse
Affiliation(s)
- Hamid Ur Rahman
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China
| | - Xianfeng Ren
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Ministry of Agriculture, National Reference Laboratory for Agricultural Testing (Biotoxin) , Wuhan, PR China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan, PR China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Wuhan, PR China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture , Wuhan, PR China.,Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture , Wuhan, PR China.,Ministry of Agriculture, National Reference Laboratory for Agricultural Testing (Biotoxin) , Wuhan, PR China.,Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture , Wuhan, PR China
| |
Collapse
|