1
|
Zhao Z, Sun N, Li C, Kong B, Xia X, Sun F, Liu Q, Cao C. Application of psyllium husk powder addition on the textural properties, oxidative stability and sensory attributes of non-phosphates luncheon meat. Meat Sci 2025; 222:109760. [PMID: 39854910 DOI: 10.1016/j.meatsci.2025.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
This study assessed the textural properties, oxidative stability and sensory attributes of non-phosphates luncheon meat containing different concentrations (0.75 %, 1.00 %, 1.25 %, 1.50 % and 1.75 %, w/w) of psyllium husk powder (PHP). The addition of PHP effectively promoted the emulsion stability and textural properties of non-phosphates luncheon meat, as verified by the changes noted in cooking loss and microstructural observations. Meanwhile, PHP successfully retarded lipid oxidation of non-phosphate luncheon meat during storage in a dose-dependent manner (P < 0.05). Moreover, 1.50 % PHP-addition overcame the quality defects in non-phosphates luncheon meat and was statistically no significant difference or better than the phosphate-added luncheon meat. Thus, 1.50 % PHP-addition exhibited the optimal phosphates-replacing effect in luncheon meat. However, a higher concentration of PHP (1.75 % in present work) exhibited a negative effect on the sensory attributes of non-phosphates luncheon meat. Additionally, hydrogen bonds and disulphide bonds were the major molecular forces in PHP-containing non-phosphates luncheon meat. Our results indicate that the application of PHP could be considered a feasible and practical strategy for processing non-phosphates luncheon meat with superior textural properties and sensory attributes.
Collapse
Affiliation(s)
- Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cheng Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Cheng Y, Meng Y, Liu S. Diversified Techniques for Restructuring Meat Protein-Derived Products and Analogues. Foods 2024; 13:1950. [PMID: 38928891 PMCID: PMC11202613 DOI: 10.3390/foods13121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Accompanied by the rapid growth of the global population and increasing public awareness of protein-rich foods, the market demand for protein-derived products is booming. Utilizing available technologies to make full use of meat by-products, such as scraps, trimmings, etc., to produce restructured meat products and explore emerging proteins to produce meat analogues can be conducive to alleviating the pressure on supply ends of the market. The present review summarizes diversified techniques (such as high-pressure processing, ultrasonic treatment, edible polysaccharides modification, enzymatic restructuring, etc.) that have been involved in restructuring meat protein-derived products as well as preparing meat analogues identified so far and classifying them into three main categories (physical, chemical and enzymatic). The target systems, processing conditions, effects, advantages, etc., of the included techniques, are comprehensively and systemically summarized and discussed, and their existing problems or developing trends are also briefly prospected. It can be concluded that a better quality of restructured products can be obtained by the combination of different restructuring technologies. This review provides a valuable reference both for the research and industrial production of restructured meat protein-derived products and analogues.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiyun Meng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| | - Shengnan Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| |
Collapse
|
3
|
Correa ADC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym 2024; 323:121396. [PMID: 37940290 DOI: 10.1016/j.carbpol.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Fructooligosaccharides (FOS) and inulin are the most used fructans in food manufacturing, including bakery, dairy, meat products and beverages. In this context, this review investigated the recent findings concerning health claims associated with a diet supplemented with fructans according to human trial results. Fructans have been applied in different food classes due to their proven benefits to human health. Human clinical trials have revealed several effects of fructans supplementation on health such as improved glycemic control, growth of beneficial gut bacteria, weight management, positive influence on immune function, and others. These dietary fibers have a wide range of compounds with different molecular sizes, implying a great variety of technological properties depending on the food application of interest. Inulin has been mainly applied as a fat substitute and prebiotic ingredient. In general, inulin reduces the energy content and improves the structure, viscosity, emulsion, and water retention parameters of food products. Meanwhile, FOS have been more successful when used as a sucrose substitute and prebiotic ingredient. However, overall, FOS and inulin are promising alternatives for the development of structured systems dedicated to increase the functionality of foods and beverages besides reducing fat in bakery, dairy, and meat products.
Collapse
Affiliation(s)
- Aline de Carvalho Correa
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina Savioli Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Yoon J, Bae SM, Jeong JY. Effects of Nitrite and Phosphate Replacements for Clean-Label Ground Pork Products. Food Sci Anim Resour 2023; 43:232-244. [PMID: 36909851 PMCID: PMC9998192 DOI: 10.5851/kosfa.2022.e71] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
We investigated the effects of different phosphate replacements on the quality of ground pork products cured with sodium nitrite or radish powder to determine their potential for achieving clean-label pork products. The experimental design was a 2×5 factorial design. For this purpose, the ground meat mixture was assigned into two groups, depending on nitrite source. Each group was mixed with 0.01% sodium nitrite or 0.4% radish powder together with 0.04% starter culture, and then processed depending on phosphate replacement [with or without 0.5% sodium tripolyphosphate; STPP (+), STPP (-), 0.5% oyster shell calcium (OSC), 0.5% citrus fiber (CF), or 0.5% dried plum powder (DPP)]. All samples were cooked, cooled, and stored until analysis within two days. The nitrite source had no effect on all dependent variables of ground pork products. However, in phosphate replacement treatments, the STPP (+) and OSC treatments had a higher cooking yield than the STPP (-), CF, or DPP treatments. OSC treatment was more effective for lowering total fluid separation compared to STPP (-), CF, or DPP treatments, but had a higher percentage than STPP (+). The STPP (+) treatment did not differ from the OSC or CF treatments for CIE L* and CIE a*. Moreover, no differences were observed in nitrosyl hemochrome content, lipid oxidation, hardness, gumminess, and chewiness between the OSC and STPP (+) treatments. In conclusion, among the phosphate replacements, OSC addition was the most suitable to provide clean-label pork products cured with radish powder as a synthetic nitrite replacer.
Collapse
Affiliation(s)
- Jiye Yoon
- Department of Food Science & Biotechnology, Kyungsung University, Busan 48434, Korea
| | - Su Min Bae
- Department of Food Science & Biotechnology, Kyungsung University, Busan 48434, Korea
| | - Jong Youn Jeong
- Department of Food Science & Biotechnology, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
5
|
Delgado-Pando G, Ekonomou SI, Stratakos AC, Pintado T. Clean Label Alternatives in Meat Products. Foods 2021; 10:foods10071615. [PMID: 34359485 PMCID: PMC8306945 DOI: 10.3390/foods10071615] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Food authorities have not yet provided a definition for the term "clean label". However, food producers and consumers frequently use this terminology for food products with few and recognisable ingredients. The meat industry faces important challenges in the development of clean-label meat products, as these contain an important number of functional additives. Nitrites are an essential additive that acts as an antimicrobial and antioxidant in several meat products, making it difficult to find a clean-label alternative with all functionalities. Another important additive not complying with the clean-label requirements are phosphates. Phosphates are essential for the correct development of texture and sensory properties in several meat products. In this review, we address the potential clean-label alternatives to the most common additives in meat products, including antimicrobials, antioxidants, texturisers and colours. Some novel technologies applied for the development of clean label meat products are also covered.
Collapse
Affiliation(s)
- Gonzalo Delgado-Pando
- Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain;
| | - Sotirios I. Ekonomou
- Centre for Research in Biosciences, Coldharbour Lane, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (S.I.E.); (A.C.S.)
| | - Alexandros C. Stratakos
- Centre for Research in Biosciences, Coldharbour Lane, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (S.I.E.); (A.C.S.)
| | - Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
6
|
Magalhães IMC, Paglarini CDS, Vidal VAS, Pollonio MAR. Bamboo fiber improves the functional properties of reduced salt and phosphate‐free Bologna sausage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Camila de Souza Paglarini
- Department of Food Technology School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Vitor Andre Silva Vidal
- Department of Food Technology School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | | |
Collapse
|
7
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|