1
|
Zhao Y, Zhang Z, Han Y, Liu X, Jin Y, Xu Q. The regulation mechanism of ultrasonic treatment on alkali-induced egg white protein gel: Structure, molecular characteristics and intermolecular forces distribution. Food Res Int 2024; 196:115104. [PMID: 39614573 DOI: 10.1016/j.foodres.2024.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Egg white protein can be cross-linked to form a gel under alkali induction, which is typically represented by the preserved eggs from Chinese traditional food. The effects of ultrasonic at different intensities (50 W, 100 W, 200 W, and 300 W) on alkali-induced egg white protein (EWP) gel were investigated. The gel strength rose significantly by 26.08 % upon treatment with 50 W, but it gradually declined as the intensity increased. Meanwhile, the structure unfolding and molecular aggregation of EWP were affected by ultrasonic. Compared with 300 W, 50 W could enhance surface hydrophobicity and decrease total free sulfhydryl group content more during gel formation. Selective solubility experiment confirmed that ultrasonic reduced the formation of ionic bonds, which slightly slowed down the initial gelation. Simultaneously, 50 W promoted the formation of more disulfide bonds, which helped to improve the strength of the final gel, while the same effect was not observed at 300 W. In general, moderate ultrasonic can effectively improve the alkali-induced EWP gel properties, which provides theoretical support for developing high quality preserved eggs and protein gel foods.
Collapse
Affiliation(s)
- Yuhan Zhao
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Zhenqing Zhang
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yumeng Han
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Xiaohui Liu
- College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Xu
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China.
| |
Collapse
|
2
|
Hao X, Liang M, Xin R, Liu Y. Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting. Molecules 2024; 29:3984. [PMID: 39274832 PMCID: PMC11396765 DOI: 10.3390/molecules29173984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the second most widely consumed eggs, duck eggs are made into preserved eggs, salted duck eggs, and roasted duck eggs to extend their shelf-life. To investigate the differences in potent odorants (POs) between salted duck egg yolk (SDEY) and roasted duck egg yolk (RDEY), the volatiles in SDEY and RDEY were extracted through solvent extraction coupled with solvent-assisted flavor evaporation and were assayed with gas chromatography-mass spectrometry-olfactometry. A total of 45 volatiles were identified in two samples, 24 odor-active compounds (OACs) were screened, and more OACs were in RDEY. The flavor-dilution (FD) factors of OACs were obtained by aroma extract dilution analysis and ranged from 3 to 6561. Twenty-two OACs with FD factors ≥ 9 were quantitated, and the results indicated the concentrations of OACs in yolk increased greatly after salted duck eggs were roasted. Based on the concentrations and thresholds, odor activity values (OAVs) were determined; 17 odorants with OAVs ≥ 1 were determined as POs. Acetoin was the most PO in SDEY; there were more POs in RDEY, including 2-ethyl-3,6-dimethylpyrazine, acetoin, 2-acetyl-3-methylthiophene, dihydro-4-hydroxy-2(3H)-furanone, etc. The outcomes obtained have reference values for making better use of duck eggs in the food industry.
Collapse
Affiliation(s)
- Xiaofan Hao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Liang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Runhu Xin
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuping Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Zheng M, Chen S, Yao Y, Wu N, Xu M, Zhao Y, Tu Y. A review on the development of pickled eggs: rapid pickling and quality optimization. Poult Sci 2023; 102:102468. [PMID: 36682130 PMCID: PMC9876998 DOI: 10.1016/j.psj.2022.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023] Open
Abstract
Pickled eggs enjoy a long processing history with unique flavor and rich nutrition but suffer from long pickling cycle due to the limitations of traditional processing methods. In terms of quality, salted egg whites have the disadvantage of high sodium content, and salted egg yolks have problems such as hard core and black circle around outer layer. Likewise, the quality of preserved eggs is challenged by the black spots (dots) on the eggshells and the high content of heavy metals in the egg contents. The sustainable development of traditional pickled eggs are hindered by these defects and extensive research has been carried out in recent years. Based on the elaboration of the quality formation mechanism of salted eggs and preserved eggs, this paper reviewed the processing principles and applications of rapid pickling technologies like ultrasonic technology, magnetoelectric-assisted technology, water cycle technology, vacuum decompression technology, and pulsed pressure technology, as well as the quality optimization methods such as controlling the sodium content of the salted egg whites, improving the quality of salted egg yolks, promoting the quality of lead-free preserved eggs, and developing heavy metal-free preserved eggs. In the end, the future development trend of traditional pickled eggs was summarized and prospected in order to provide theoretical guidance for the actual production.
Collapse
Affiliation(s)
- Mengting Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Gao B, Hu X, Xue H, Li R, Liu H, Han T, Tu Y, Zhao Y. The changes of umami substances and influencing factors in preserved egg yolk: pH, endogenous protease, and proteinaceous substance. Front Nutr 2022; 9:998448. [PMID: 36225876 PMCID: PMC9549109 DOI: 10.3389/fnut.2022.998448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The study investigated the changes of nucleotides, succinic acid, and free amino acids amounts in yolk and the causes leading to the changes after pickling to uncover the fundamental umami component of preserved egg yolk. The findings demonstrated that while the contents of 5'-adenosine monophosphate (AMP), 5'-cytidine monophosphate (CMP), 5'-guanosine monophosphate (GMP), 5'-uridine monophosphate (UMP), and succinic acid increased after slightly decreasing aspartic acid (Asp) content in preserved egg yolk increased gradually. The contents of 5'-inosine monophosphate (IMP) and other free amino acids were gradually decreased. Comparing the taste activity value (TAV), it was found that the single umami substance, succinic acid, played a key role in inducing the umami taste. In combination with the Spearman correlation analysis, it was shown that the proteinaceous substance, which is the most significant umami component in preserved egg yolk, tended to condense first and subsequently disintegrate in an alkaline environment. The orthogonal partial least squares analysis (OPLS) found that pH was also affected by the changes in proteinaceous substance. These findings offer suggestions for enhancing the pickling procedure and investigating the optimal pickling period for preserved eggs.
Collapse
Affiliation(s)
- Binghong Gao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Ruiling Li
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Huilan Liu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Tianfeng Han
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Xue H, Han T, Xu M, Yao Y, Wu N, Chen S, Zhang G, Wang W, Zhao Y, Tu Y. Processing technology, principle, and nutritional characteristics of preserved eggs: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
|