1
|
Hou J, Mao YL, Lu YH, Nwankwo C, Hu Y, Zhu LR, Dong XY, Cui HL. A Halophilic Aminopeptidase With Broad Substrate Specificity: Exploring Its Catalytic Potential and Application in Salt-Fermented Foods. J Food Sci 2025; 90:e70218. [PMID: 40271915 DOI: 10.1111/1750-3841.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Halophilic aminopeptidases with broad substrate specificity represent valuable biocatalysts for promoting protein hydrolysis in high-salt fermented foods. In this study, an M42 aminopeptidase from the halophilic archaeon, Haladaptatus litoreus, was identified and designated as APHap. The optimal reaction conditions for APHap were 2-2.5 M NaCl, a temperature of 60°C, and a pH of 7.5. It displayed robust activity and stability across a wide range of salinity, temperature, and pH conditions. APHap demonstrated exceptional tolerance to both organic solvents and surfactants. In contrast to most characterized M42 aminopeptidases, APHap exhibited a broad substrate spectrum, with the highest activity observed when using Leu-p-nitroaniline as the substrate. The Vmax and Km for APHap were 5.28 µmol/min/mg and 0.59 mM, respectively. When applied for fish protein hydrolysis in hypersaline conditions, APHap significantly increased the total free amino acid content, particularly enhancing the proportion of sweet and umami amino acids. To our knowledge, APHap is the first halophilic and mesophilic M42 aminopeptidase characterized from the genus Haladaptus. These desirable properties indicated that APHap has great potential for enhancing protein hydrolysis during the processing of high-salt fermented foods. PRACTICAL APPLICATION: The characteristics of APHap conform with the demands of high-salt fermented food production, highlighting its potential as a biocatalyst for improving both process efficiency and product quality.
Collapse
Affiliation(s)
- Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yi-Hui Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Zhu LR, Mao YL, Hu Y, Sun YP, Hou J, Cui HL. Genome-based taxonomy of the family Haloarculaceae, proposal of Natronomonadaceae fam. nov., and description of four novel halophilic archaea from two saline lakes and a marine solar saltern. Syst Appl Microbiol 2025; 48:126592. [PMID: 40036997 DOI: 10.1016/j.syapm.2025.126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
A new family related to the family Haloarculaceae was proposed and the genus Actinarchaeum was merged into the genus Halocatena through phylogenetic, phylogenomic, and comparative genomic analyses. Four strains KK48T, YCN56T, SYNS191T, and SYNS196T with new taxonomic status were isolated from inland saline lakes and a marine solar saltern. According to the comparison of 16S rRNA gene and rpoB' gene sequences, strains KK48T, YCN56T, SYNS191T, and SYNS196T showed high sequence similarities to the genera Salinibaculum and Salinirubellus, respectively. The values of average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity between these strains and the species of Salinibaculum and Salinirubellus ranged from 75.3 to 77.7 %, 24.5-25.9 % and 66.3-73.4 %, respectively. These data were well below the threshold for species classification, supporting their placements in new taxa. The major polar lipids of these strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether, mannosyl glucosyl diether, and disulfated mannosyl glucosyl diether. Based on the phenotypic, chemotaxonomic, phylogenetic, and phylogenomic properties, strains KK48T (= CGMCC 1.19060T = JCM 35607T), YCN56T (= CGMCC 1.62603T = JCM 36493T), SYNS191T (= CGMCC 1.62607T = JCM 36494T), and SYNS196T (= CGMCC 1.62608T = JCM 36495T) represent four novel species of the genera Salinibaculum and Salinirubellus. And Salinibaculum rarum sp. nov., Salinibaculum salinum sp. nov., Salinibaculum marinum sp. nov., and Salinirubellus litoreus sp. nov. are proposed to accommodate these strains.
Collapse
Affiliation(s)
- Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ya-Ping Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Zhu LR, Nwankwo C, Hou J, Cui HL. Halobellus marinus sp. nov., Halobellus ordinarius sp. nov., Halobaculum rarum sp. nov., and Halorarum halobium sp. nov., halophilic archaea isolated from marine solar salt and a saline lake. Extremophiles 2025; 29:13. [PMID: 39869143 DOI: 10.1007/s00792-025-01379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025]
Abstract
Four halophilic archaeal strains were isolated from sea salt and a saline lake in China. Based on phylogenetic and phylogenomic analyses, the four strains are related to the genera of Halobellus, Halobaculum, and Halorarum within the family Haloferacaceae. The four strains possess genes responsible for carotenoid synthesis, maintenance of a high internal salt concentration, as well as diverse enzymes with biotechnological potential. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values among these four strains and their related species were lower than the established thresholds proposed for species demarcation. Strains DFY28T, ZY16T, QDC11T, and XH14T were distinguished from related species based on a variety of phenotypic characteristics. The major polar lipids of these four strains were similar to those of respective relatives within the genera Halobellus, Halobaculum, and Halorarum. The phenotypic, phylogenetic, and genome-based analyses suggest that strains DFY28T (= CGMCC 1.17470T = JCM 34310T), ZY16T (= CGMCC 1.17476T = JCM 34311T), QDC11T (= MCCC 4K00127T = KCTC 4308T), and XH14T (= CGMCC 1.17028T = JCM 34145T) represent four novel species of the genera Halobellus, Halobaculum and Halorarum, for which the names Halobellus marinus sp. nov., Halobellus ordinarius sp. nov., Halobaculum rarum sp. nov., and Halorarum halobium sp. nov. are proposed.
Collapse
Affiliation(s)
- Ling-Rui Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Han J, Hu S, Zhao X, Jiang J, Wang Q, Wu J, Zhao X, Li P, Gu Q. An isolated salt-tolerant Tetragenococcus halophilus 2MH-3 improved the volatile flavor of low-salt fermented fish sauce by regulating the microbial community. Food Res Int 2024; 196:115052. [PMID: 39614559 DOI: 10.1016/j.foodres.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
The application of low-salt fish sauce is limited by its tendency to spoil easily and inadequate flavor generation. Herein, a salt-tolerant Tetragenococcus halophilus 2MH-3 strain with strong abilities of enzyme production and biogenic amine degradation was utilized as a starter for the production of low-salt fish sauce. Bacterial community analysis revealed discrepancies in microbiota between low-salt fish sauces fermented with (Th group) or without 2MH-3 (LF group). Staphylococcus was the primary genus in the Th group at 1 M fermentation (47.42 %), followed by Psychrobacter (10.82 %), while Tetragenococcus swiftly ascended to the dominant status with a relative abundance of 5.88 % after 3 M fermentation. Conversely, the abundance of Tetragenococcus throughout the LF fermentation period was no significant change. In Th group, 118 volatile components were detected with 21 high-concentration flavor compounds being the primary flavor components (OAV ≥ 1), which were basically produced by Alkaliphilus, Psychrobacter, Tetragenococcus, Bacteroides and Staphylococcus based on the co-occurrence heatmaps after PLS-DA evaluation. Furthermore, the co-occurrence network map demonstrated that the decrease in key biogenic amines such as histamine, putrescine, cadaverine and tyramine, the increase in bacterial diversity, as well as the increase in 21 core volatile flavor compounds (OVA ≥ 1.0), were mainly caused by the addition of T. halophilus 2MH-3 in the low-salt fish sauce. Therefore, T. halophilus 2MH-3 could be utilized as an underlying microbial starter in the industrialization of fish sauce.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Shi Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jialan Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Jinfeng Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
5
|
Li H, Li G, Bi Y, Liu S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods 2024; 13:2565. [PMID: 39200493 PMCID: PMC11353695 DOI: 10.3390/foods13162565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
The flavor profile of fermented fish products is influenced by the complex interplay of microbial and enzymatic actions on the raw materials. This review summarizes the various factors contributing to the unique taste and aroma of these traditional foods. Key ingredients include locally sourced fish species and a variety of spices and seasonings that enhance flavor while serving as cultural markers. Starter cultures also play a critical role in standardizing quality and accelerating fermentation. Flavor compounds in fermented fish are primarily derived from the metabolism of carbohydrates, lipids, and proteins, producing a diverse array of free amino acids, peptides, and volatile compounds such as aldehydes, ketones, alcohols, and esters. The fermentation process can be shortened by certain methods to reduce production time and costs, allowing for faster product turnover and increased profitability in the fermented fish market. Fermented fish products also show potent beneficial effects. This review highlights the importance of integrating traditional practices with modern scientific approaches. Future research directions to enhance the quality of fermented fish products are suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yunchen Bi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Liu Y, Sun G, Li J, Cheng P, Song Q, Lv W, Wang C. Starter molds and multi-enzyme catalysis in koji fermentation of soy sauce brewing: A review. Food Res Int 2024; 184:114273. [PMID: 38609250 DOI: 10.1016/j.foodres.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.
Collapse
Affiliation(s)
- Yihao Liu
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| | - Guangru Sun
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Jingyao Li
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China
| | - Peng Cheng
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Qian Song
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Wen Lv
- Tianjin Limin Condiment Co., Ltd., Tianjin Food Group, Tianjin Airport Economic Zone, No. 226, 14th West Road, Tianjin, People Republic of China
| | - Chunling Wang
- College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economy Technological Development Area, No. 29, 13th Avenue, Tianjin, 300222, People Republic of China.
| |
Collapse
|
7
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Li Y, Li W, Li C, Li L, Yang D, Wang Y, Chen S, Wang D, Wu Y. Novel insight into flavor and quality formation in naturally fermented low-salt fish sauce based on microbial metabolism. Food Res Int 2023; 166:112586. [PMID: 36914319 DOI: 10.1016/j.foodres.2023.112586] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Low-salt fermentation is an effective way to shorten the fermentation time of fish sauce. In this study, the changes of microbial community, flavor, and quality during the natural fermentation of low-salt fish sauce were studied, followed by the elucidation of flavor and quality formation mechanisms based on microbial metabolism. The 16S rRNA gene high-throughput sequencing showed that both richness and evenness of microbial community were reduced during fermentation. The microbial genera, including Pseudomonas, Achromobacter, Stenotrophomonas, Rhodococcus, Brucella, and Tetragenococcus were more suitable for the fermentation environment, and obviously increased along with the fermentation. There were a total of 125 volatile substances identified by HS-SPME-GC-MS, of which 30 substances were selected as the characteristic volatile flavor substances, mainly including aldehydes, esters, and alcohols. Large amounts of free amino acids were produced in the low-salt fish sauce, especially umami and sweet amino acids, as well as high concentrations of biogenic amines. Correlation network constructed by the Pearson's correlation coefficient showed that most characteristic volatile flavor substances were significantly positively correlated with Stenotrophomonas, Achromobacter, Rhodococcus, Tetragenococcus, and Brucella. Stenotrophomonas and Tetragenococcus were significantly positively correlated with most free amino acids, especially umami and sweet amino acids. Pseudomonas and Stenotrophomonas were positively correlated with most biogenic amines, especially histamine, tyramine, putrescine, and cadaverine. Metabolism pathways suggested that the high concentrations of precursor amino acids contributed to the production of biogenic amines. This study indicates that the spoilage microorganisms and biogenic amines in the low-salt fish sauce need to be further controlled, and the strains belonging to Tetragenococcus can be isolated as potential microbial starters for the production of low-salt fish sauce.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenjing Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Daqiao Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
9
|
Correlation between dominant bacterial community and non-volatile organic compounds during the fermentation of shrimp sauces. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Li C, Li W, Li L, Chen S, Wu Y, Qi B. Microbial community changes induced by a newly isolated salt-tolerant Tetragenococcus muriaticus improve the volatile flavor formation in low-salt fish sauce. Food Res Int 2022; 156:111153. [DOI: 10.1016/j.foodres.2022.111153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|
11
|
Contribution of microbial community to flavor formation in tilapia sausage during fermentation with Pediococcus pentosaceus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Zhu W, Luan H, Bu Y, Li J, Li X, Zhang Y. Changes in taste substances during fermentation of fish sauce and the correlation with protease activity. Food Res Int 2021; 144:110349. [PMID: 34053542 DOI: 10.1016/j.foodres.2021.110349] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022]
Abstract
Anchovy sauce shows different taste profiles under different fermentation time. The change rules of free amino acids was measured by amino acid analyzer, and other taste substances, such as nucleotides and organic acids in anchovy sauce under different fermentation time were also investigated. Moreover, the correlation between protease activity and taste substances in anchovy sauce fermentation was analyzed by orthogonal partial least squares. Throughout the fermentation process, the taste substances in anchovy sauce increased during early months and then decreased as time increased. The content of amino acid nitrogen, TCA-soluble peptides, 5'-nucleotides (AMP, GMP, IMP) and organic acids (lactic acid, succinic acid) in anchovy sauce increased by 26%, 33%, (45%, 35%, 68%) and (27%, 2%) respectively in comparison with 6 months fermentation. Total amino acid content reached its maximum after 18 months fermentation. Results of electronic tongue demonstrated that the umami of anchovy sauce after 12 months fermentation increased by 17% in comparison with 6 months fermentation. A model correlating changes in protease activity with taste formation suggested that protease activity impacted the content of Ala, Glu, Lys, Asp, Leu, TCA-soluble peptides and succinic acid. This study can provide empirical evidence to guide the efficient processing of anchovy sauce.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Hongwei Luan
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|