1
|
Karaman K, Pinar H, Ciftci B, Kaplan M. Effects of Banana Flour on Some Physicochemical, Textural, Bioactive, and Sensory Properties of Gluten-Free Cookie. Food Sci Nutr 2025; 13:e4756. [PMID: 39850843 PMCID: PMC11756551 DOI: 10.1002/fsn3.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/17/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
The present study aimed to investigate the effects of banana flours obtained from different banana cultivars (Grand Nain (GN), Azman (AZ), and Erdemli (ER)) on some basic physicochemical, bioactive, textural, and sensory properties of the gluten-free cookie samples by the simplex lattice mixture design approach. Incorporating banana powder into cookie samples resulted in significant changes in the parameters studied. The banana flours' total dietary fiber and total starch levels ranged between 1.37% and 3.43% and 34.82% and 41.38%, respectively. Erdemli type bananas (ER) were distinguished by their high dietary fiber and resistant starch content as well as their superior bioactive properties. Total phenolic content and antiradical activity of the cookie samples enriched with banana flour were in the range of 376-600 mg GAE/kg, while the antiradical activity values ranged between 8.64% and 59.42%. The hardness of the cookie samples also ranged between 1664.5 and 2605.9 g. According to the results of the optimization, 98.5% ER and 1.5% GN flour mixture could yield the highest response scores. As a conclusion, gluten-free cookies can be enriched by using banana flour, especially ER-type ones, to increase the bioactive properties and overall acceptability.
Collapse
Affiliation(s)
- Kevser Karaman
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTürkiye
| | - Hasan Pinar
- Department of Horticulture, Faculty of AgricultureErciyes UniversityKayseriTürkiye
| | - Beyza Ciftci
- Department of Field Crops, Faculty of AgricultureErciyes UniversityKayseriTürkiye
| | - Mahmut Kaplan
- Department of Field Crops, Faculty of AgricultureErciyes UniversityKayseriTürkiye
| |
Collapse
|
2
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
3
|
Mantovano A, Mariela P, Conforti PA. Gluten-free wafer formulation: Development, characterisation and addition of flavourings with antioxidant capacity. FOOD SCI TECHNOL INT 2024; 30:107-116. [PMID: 36330715 DOI: 10.1177/10820132221135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The incidence of celiac disease is increasing, therefore the demand for gluten-free products that also satisfy the nutritional requirements of celiac individuals is rising. Thus, the objective of the present work was to develop a gluten-free nutritionally balanced wafer formulation with a high content of antioxidants. First, the animal fat used in the traditional formulation was successfully replaced by high oleic sunflower. Second, the antioxidant content of several flavourings (cinnamon/honey/anise/vanilla) was measured and their addition to a gluten-free wafer formulation was evaluated. Third, multivariate statistical tools were used to select the formulation that properly mimicked the characteristics of a gluten-containing wafer. According to the results, anise and cinnamon were the most suitable flavourings to prepare gluten-free wafers, and the sensory analysis concluded that these formulations were highly acceptable (means>6.7 on the hedonic scale). Finally, the storage time analysis indicated that the texture of the gluten-free wafers was more susceptible to water absorption than gluten-containing wafers. Besides, cinnamon wafers presented a higher bioaccessible antioxidant capacity than anise wafers (43.5 ± 0.1 mg Trolox/g and 18.8 ± 0.9 mg Trolox/g respectively) (p < 0.05), which remained stable for four months. This indicates that during its shelf life, the product could be consumed with its beneficial effects intact.
Collapse
Affiliation(s)
- Agostina Mantovano
- CIDCA, CIC-CONICET - Facultad de Ciencias Exactas - Universidad Nacional de La Plata, La Plata, Argentina
| | - Patrignani Mariela
- CIDCA, CIC-CONICET - Facultad de Ciencias Exactas - Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula Andrea Conforti
- CIDCA, CIC-CONICET - Facultad de Ciencias Exactas - Universidad Nacional de La Plata, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Viola E, Buzzanca C, Tinebra I, Settanni L, Farina V, Gaglio R, Di Stefano V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023; 12:3743. [PMID: 37893636 PMCID: PMC10606098 DOI: 10.3390/foods12203743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products' color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408-2.656 mg GAE/g, and the antiradical activity was in the range of 35.75-38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification.
Collapse
Affiliation(s)
- Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
- Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (E.V.); (L.S.); (V.F.); (R.G.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy; (C.B.); (V.D.S.)
| |
Collapse
|
5
|
Sasanam S, Thumthanaruk B, Wijuntamook S, Rattananupap V, Vatanyoopaisarn S, Puttanlek C, Uttapap D, Mussatto SI, Rungsardthong V. Extrusion of process flavorings from methionine and dextrose using modified starch as a carrier. PLoS One 2023; 18:e0269857. [PMID: 36735671 PMCID: PMC9897556 DOI: 10.1371/journal.pone.0269857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to produce process flavorings from methionine and glucose via Maillard reaction by extrusion method. Modified starch was used as a carrier to reduce the torque and facilitate the production process. Five formulations of process flavorings with different ratios of methionine: dextrose: modified starch: water as MS5 (72:18:5:5), MS15 (64:16:15:5), MS25 (56:14:25:5), MS35 (42:12:35:5), and MS45 (40:10:45:5) were prepared and feded into the extruder. The temperatures of the extruder barrel in zones 1 and 2 were controlled at 100, and 120°C, with a screw speed of 30 rpm. The appearance of the obtained products, torque, pH before and after extrusion, color, volatile compounds, and sensory evaluation were determined. The extrudate from the formulation containing the highest amount of modified starch (MS45) gave the highest L* (lightness) of 88.00, which increased to 93.00 (very light) after grinding into a powder. The process flavorings from all formulations exhibited similar sensory scores in terms of aroma, taste, and water solubility, with a very slight difference in color. However, MS25, MS35 and MS45 indicated the torque at 10 Nm/cm3, while MS5 and MS 15 exhibited higher torque at 18, and 25 Nm/cm3, respectively. Extruded process flavorings from MS25 were analyzed for their flavor profiles by gas chromatography-mass spectrometry. Twelve volatile compounds including the key volatile compounds for sulfurous and vegetable odor type, dimethyl disulfide, methional, and methanethiol, were found. Four pyrazine compounds presented nutty, musty and caramelly odor; and 3-hydroxybutan-2-one and heptane-2,3-dione, which gave buttery odor type, were also detected. The results demonstrated a successful production of process flavorings using modified starch as carrier to facilitate and reduce the torque during the extrusion process.
Collapse
Affiliation(s)
- Sirinapa Sasanam
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand
| | | | | | - Savitri Vatanyoopaisarn
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand
| | - Chureerat Puttanlek
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Dudsadee Uttapap
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian, Bangkok, Thailand
| | - Solange I. Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
6
|
Natrella G, Gambacorta G, Faccia M. An attempt at producing a “lactose-free” directly acidified mozzarella (high moisture type) by curd washing and pressing: A chemical and sensory study. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
BELLO FLORENCEA, Department of Food Science and Technology, University of Uyo, Uyo, Nigeria, Folademi MA, Iwok LJ, Department of Food Science and Technology, University of Uyo, Uyo, Nigeria, Department of Food Science and Technology, University of Uyo, Uyo, Nigeria. Development of pearl millet flour-based cookies supplemented with mung bean and orange fleshed sweet potato flours. THE ANNALS OF THE UNIVERSITY DUNAREA DE JOS OF GALATI. FASCICLE VI - FOOD TECHNOLOGY 2022. [DOI: 10.35219/foodtechnology.2022.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study explored the feasibility of producing cookies from pearl millet flour (PMF), mung bean flour (MF) and orange fleshed sweet potato flour (OFSPF). Sixteen formulations were produced by mixing the three basic ingredients: PMF, MF and OFSPF using optimal mixture design of response surface methodology. The sensory properties of cookies developed from these flour blends were evaluated and the result showed variations among cookie samples. Three samples were selected from the optimization results and compared with 100% wheat flour cookies (control). The selected flour blend samples showed a significant (p<0.05) increase in swelling capacity and water absorption capacity. Supplementation with MF improved the protein content of cookie samples while PMF led to an appreciable increase in crude fibre, β-carotene and total phenol contents. This study has confirmed that the production of acceptable cookies of high crude fibre, micronutrients and antioxidant sources that would help reduce the problems of malnutrition and diet-related non-communicable diseases is feasible through the optimization of the basic ingredients.
Collapse
|
8
|
Olawoye B, Fagbohun OF, Popoola OO, Gbadamosi SO, Akanbi CT. Understanding how different modification processes affect the physiochemical, functional, thermal, morphological structures and digestibility of cardaba banana starch. Int J Biol Macromol 2022; 201:158-172. [PMID: 34998875 DOI: 10.1016/j.ijbiomac.2021.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/19/2021] [Indexed: 01/06/2023]
Abstract
In this study, starch was isolated from cardaba banana starch and was subjected to modification by heat-moisture treatment, citric acid, octenyl succinic anhydride, and sodium hexametaphosphate. Both the native and modified cardaba banana starches were examined for chemical, functional, pasting, thermal, morphological, structural, and antioxidant properties, as well as in vitro starch digestibility. Modification significantly influenced the properties of the cardaba banana starch. Cross-linking treatment improved the water, oil absorption, alkaline hydration capacity, swelling power, solubility and paste clarity of the starch. The final viscosity of the banana starch paste was increased alongside succinic anhydride modification which in turn enhanced the suitability of the starch in the production of high viscous products. Both FTIR spectra and X-ray diffractograms confirmed the starch had a C-type starch which was not affected by modification. Modification led to a decrease in relative crystallinity of the starch with succinylation having the maximum effect. The starch fractions; both SDS and RS significantly increased due to modification while the hydrolysis and glycemic index of the starch were significantly decreased by chemical modification. In conclusion, both physical and chemical modification of cardaba banana starch produced a starch that can serve as functional food or functional food ingredients.
Collapse
Affiliation(s)
- Babatunde Olawoye
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria.
| | - Oladapo Fisoye Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria
| | | | - Charles Taiwo Akanbi
- Department of Food Science and Technology, First Technical University, Ibadan, Oyo State, Nigeria; Department of Food Science and Technology, Obafemi Awolowo University Ile-Ife, Nigeria
| |
Collapse
|