1
|
Yang Y, Wang HL, Cheng RT, Zheng PR, Sun HP, Liu ZW, Yuan H, Liu XY, Gao WY, Li H. Determination of α-Dicarbonyl compounds in traditional Chinese herbal medicines. Fitoterapia 2024; 175:105928. [PMID: 38548027 DOI: 10.1016/j.fitote.2024.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 μg/g in the seeds of Alpinia katsumadai to 7032.75 μg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 μg/g, MGO being up to 55.50 μg/g, and DA to 18.75 μg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; School of Pharmacy, Xi'an Medical University, 1 Xinwang Road, Xi'an, Shaanxi 710021, China
| | - Hai-Ling Wang
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Rui-Tong Cheng
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Pei-Rong Zheng
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Hui-Peng Sun
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Zhi-Wen Liu
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Heng Yuan
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xue-Yi Liu
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Wen-Yun Gao
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| | - Heng Li
- College of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro. Int J Mol Sci 2022; 23:ijms232314738. [PMID: 36499065 PMCID: PMC9738946 DOI: 10.3390/ijms232314738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.
Collapse
|
3
|
UĞUR H, GÖRÜNMEK M, ÇATAK J, EFE E, ÖZGÜR B, DUMAN S, YAMAN M. Determination and assessment of the most potent precursors of advanced glycation end products in baklava and Turkish delight by HPLC. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Mihraç GÖRÜNMEK
- Istanbul Medeniyet University, Turkey; İstanbul Sabahattin Zaim University, Turkey
| | - Jale ÇATAK
- İstanbul Sabahattin Zaim University, Turkey
| | - Esra EFE
- İstanbul Sabahattin Zaim University, Turkey
| | | | - Sabire DUMAN
- Afyonkarahisar Health Sciences University, Turkey
| | | |
Collapse
|
4
|
YUSUFOĞLU B, KARAKUŞ E, YAMAN M. Determining the amount and bioaccessibility of methylglyoxal and glyoxal in functional snack foods with herbal teas: effect of different herbal teas on α-Dicarbonyls. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.82621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
AĞAOĞLU M, AYAZ B, AYAZ Y, YAMAN M. A historical and nutrition-dietetic analysis of food consumption habits in ottoman culinary culture in the light of travel books. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yurdagül AYAZ
- Şehit Binbaşı Bedir Karabıyık Multi-Program Anatolian High School, Turkey
| | | |
Collapse
|