1
|
Yu J, Wu Y, Shin W. From waste to value: Integrating legume byproducts into sustainable industrialization. Compr Rev Food Sci Food Saf 2025; 24:e70174. [PMID: 40260833 PMCID: PMC12012864 DOI: 10.1111/1541-4337.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/06/2025] [Accepted: 03/30/2025] [Indexed: 04/24/2025]
Abstract
As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.
Collapse
Affiliation(s)
- Jing‐Chao Yu
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| | - Ying‐Jin‐Zhu Wu
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| | - Weon‐Sun Shin
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Lamonaca A, De Angelis E, Monaci L, Pilolli R. Promoting the Emerging Role of Pulse By-Products as Valuable Sources of Functional Compounds and Novel Food Ingredients. Foods 2025; 14:424. [PMID: 39942018 PMCID: PMC11816435 DOI: 10.3390/foods14030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The growth of the human population worldwide has increased food demand, generating the massive production of foods and consequently causing enormous production of waste every year. The indiscriminate exploitation of the already limited natural resources has also generated serious environmental and economic crises. The use, or reuse, of waste or by-products represents a viable solution to constrain the problem by promoting alternative routes of exploitation with multiple food and biotechnological applications. This review focuses on the most recent advances in the valorization of food by-products, with specific reference to legume-derived by-products. The main technological solutions for reintroducing and/or valorizing food waste are reported together with a critical discussion of the main pros and cons of each alternative, supported by practical case studies whenever available. First, the possibility to exploit the by-products as valuable sources of functional compounds is presented by reviewing both conventional and innovative extraction techniques tailored to provide functional extracts with multiple food, pharmaceutical, and biotechnological applications. Second, the possibility to valorize the by-products as novel food ingredients by inclusion in different formulations, either as a whole or as hydrolyzed/fermented derivatives, is also presented and discussed. To the best of our knowledge, several of the technological solutions discussed have found only limited applications for waste or by-products derived from the legume production chain; therefore, great efforts are still required to gain the full advantages of the intrinsic potential of pulse by-products.
Collapse
Affiliation(s)
- Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| |
Collapse
|
3
|
Fatima R, Fatima F, Altemimi AB, Bashir N, Sipra HM, Hassan SA, Mujahid W, Shehzad A, Abdi G, Aadil RM. Bridging sustainability and industry through resourceful utilization of pea pods- A focus on diverse industrial applications. Food Chem X 2024; 23:101518. [PMID: 38952562 PMCID: PMC11215214 DOI: 10.1016/j.fochx.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The focus on sustainable utilization of agricultural waste is currently a leading area of scientific research, driving significant advancements in technology and circular economy models. The fundamental capacity of bio-based products, bioprocessing techniques, and the crucial involvement of microbial treatments are opening opportunities for efficient solutions in various industries. One of the most popular green vegetables, peas are members of the Fabaceae family and have a pod-like structure. Every year, a significant amount of pea pods is discarded as waste products of peas that have negative impacts on our environment. In this comprehensive review, we explore innovative methods for utilizing pea pods to minimize their environmental footprint and optimize their viability across multiple industries. A large portion of the pea processing industry's output consists of pea pods. Variety of proteins, with major classes being globulin and albumin (13%), dietary fiber (43-58%), and minerals are abundant in these pods. Because of their diverse physiochemical properties, they find applications in many diverse fields. The porous pea pods comprised cellulose (61.35%) and lignin (22.12%), which could make them superior adsorbents. The components of these byproducts possess valuable attributes that make them applicable across treatment of wastewater, production of biofuels, synthesis of biocolors, development of nutraceuticals, functional foods, and enzymes for the textile industry, modification of oil, and inhibition of steel corrosion.
Collapse
Affiliation(s)
- Rubab Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Filza Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Nadia Bashir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hassan Mehmood Sipra
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waqar Mujahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ.Artois, ULR7519 - Transformations & Agro-ressources, Normandie Université, F-76130, Mont-Saint-Aignan, France
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Mungofa N, Beswa D. Effect of Cowpea and Pumpkin Powders on the Physicofunctional Properties, Total Phenolic Content, Antioxidant Activity, and Consumer Acceptability of Soup. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3596783. [PMID: 39263237 PMCID: PMC11390232 DOI: 10.1155/2024/3596783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/09/2024] [Accepted: 07/04/2024] [Indexed: 09/13/2024]
Abstract
Cowpea (Vigna unguiculata) and pumpkin (Cucurbita maxima) play a pivotal role as affordable, nutritious food sources for humans. Low-income households can significantly benefit from supplementing their diet with nutritious and cost-effective locally available ingredients. The aim of this research was to develop a cost-effective soup formulation using ingredients that are readily available from a household garden and suitable for use in the kitchens of families with limited financial resources. The effect of cowpea and pumpkin powders on physicofunctional properties, total phenolic content (TPC), antioxidant activity (AA), and consumer acceptability of the soup were determined. Three composite soup mixes were prepared using various parts of cowpea and pumpkin at a ratio of 1:1. A control soup sample was developed, and the experimental soups were prepared by supplementing the control soup with 5%, 10%, or 15% of each composite soup mix, respectively. The physical properties, functional properties, TPC, AA, and consumer acceptability of soup were determined. The control soup had an appealing golden brown colour. Formulations 1 and 3 showed the highest relative viscosity (80.67-88.91 cP). All the experimental soup formulations had higher rehydration ratios (8-14.7 g/g) and water absorption capacities of 185.7-263.3 g/g compared to the control at 7.7 g/g and 65.7 g/g, respectively. The TPC of Formulation 2 (F2) (0.32-0.54 mg of gallic acid equivalent (GAE)/100 g powder) and Formulation 3 (F3) (0.54-0.63 mg GAE/100 g powder) was higher than Formulation 1 (F1) (0.25-0.32 mg GAE/100 g powder) and the control (0.44 mg GAE/100 g powder). Overall, the cowpea seed powder plus pumpkin fruit powder added at 10% in F2 appeared nearly optimal as a soup mix. It produced an attractive golden brown soup with increased swelling power (SP) and viscosity to assist in swallowing. Soup F1 and F2 scored high in appearance (7.27 and 7.0), aroma (7.1 and 6.7), taste (6.6 and 6.3), and overall acceptability (6.5 and 6.4). Despite having TPC and AA lower compared to F3, F2 containing 15% cowpea seed powder and pumpkin fruit has the potential to be further developed and commercialised due to the relatively high overall consumer acceptability and high acceptability in all sensory attributes.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences College of Agriculture and Environmental Sciences University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - Daniso Beswa
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Centre for Innovative Food Research (CIFR), Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
5
|
Stępień A, Witczak M. State diagrams of green peas (Pisum sativum L.) powders with different maltodextrin additions. Biopolymers 2024; 115:e23580. [PMID: 38622846 DOI: 10.1002/bip.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
The purpose of this study was to examine the effect of maltodextrin addition on the physical stability of powdered green peas. The evaluation of the physical state of the material was based on the equilibrium water content of the monolayer (Xm) and the glass transition temperatures of the powders at room temperature (Tg) and in the frozen state (Tg'). Graphical sorption characteristic at 25°C was determined using static-gravimetric method while capacity of the monolayer values was calculated from the mathematical GAB model. Differential scanning calorimetry was carried out in order to determine glass transition lines and freezing curves which combine together were used to plot state diagrams. Relationship between Tg and solid content were shown by using Gordon-Taylor model. Freezing data were modeled employing the Clausius-Clapeyron equation and its development-Chen model. Sorption isotherms showed sigmoidal shape characteristic for high-molecular weight materials. Monolayer moisture content varied between 0.047 and 0.106 g water/g solids. The glass transition temperature of anhydrous green peas increased in from 89.9 to 175.6°C while Tg' value changed from -43.4 to -26.6°C to as a result of 75% polysaccharide addition. The ultimate maximum-freeze-concentration conditions of the powders were observed in range from 0.783 to 0.814 g solids/g sample. Monolayer capacity, Tg and Tg' values increased with increasing maltodextrin amount in the sample which indicates that the addition of starch hydrolysate has a beneficial effect on the stability of powders stored frozen and at room temperature.
Collapse
Affiliation(s)
- Anna Stępień
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| |
Collapse
|
6
|
Haque A, Ahmad S, Khan T, Alomrani SO, Adnan M, Kieliszek M, Ashraf SA. Development of buffalo meat patties using pea peel powder as a value added ingredient: physicochemical, shelf stability, microstructural, sensory attributes analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:4088-4107. [DOI: 10.1007/s11694-024-02478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 05/14/2025]
|
7
|
Kaur H, Kaur A, Kaur P, Kaur K. Incorporation of pea peel powder: Effect on dough quality, physical properties and shelf life of the cookies. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2591-2606. [PMID: 37599851 PMCID: PMC10439098 DOI: 10.1007/s13197-023-05780-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
The present study was conducted to utilize the commonly discarded pea processing industrial waste (pea pods) for the development of popularly consumed food as cookies. Sweet and salted cookies were prepared by substituting refined and whole wheat flour with pea pod powder at the levels of 5%, 10%, 15% and 20%. The effect of incorporation of pea pod powder on pasting properties of flour, dough characteristics, physical properties and organoleptic attributes of cookies was studied. With the increase in the level of incorporation of pea peel to wheat flour, water absorption capacity increases by 11-14% and dough development time by 1.8 to 2.3 min but decreased final viscosity by 39-49% and dough stability time by 3 min. Addition of pea peel powder to wheat flour improved the physical properties of cookies. On the basis of organoleptic score and physical properties, 10% substitution of whole wheat flour with pea peel powder was accepted. Addition of 10% pea peel powder to the cookies increased fiber content by 49%, insoluble fiber by 118% and soluble fiber by 77.5%. The optimized sweet and salty cookies were packed in different packaging materials and were stored at ambient conditions for 4 months. Cookies packed in aluminum laminate had shelf life beyond 4 months than other packaging materials. The cookies were organoleptically acceptable among the consumers and were rich in fiber. Thus, pea processing waste could be utilized as an ingredient for the development of nutritionally enriched cheap food products. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05780-6.
Collapse
Affiliation(s)
- Harinderjeet Kaur
- Department of Food Processing Technology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, 141004 India
| | - Kamaljit Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
8
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Nasir G, Zaidi S, Siddiqui A, Sirohi R. Characterization of pea processing by-product for possible food industry applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1782-1792. [PMID: 37187987 PMCID: PMC10170010 DOI: 10.1007/s13197-023-05718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Pea pods are by-products of the pea processing industries which are often disposed improperly but are rich reserves of nutrients. In this work, pea pod powder (PPP) was prepared and analysed for its nutritional, physical, functional and structural characteristics for food applications. Results showed that PPP contained 6.3% moisture, 5.2% ash, 3.5% crude fat, 13.3% crude protein, and 35.3% dietary fiber. Further, PPP exhibited 0.47 g/ml bulk density, 0.50 g/ml aerated bulk density, 0.62 g/ml tapped bulk density and had fair flowability as determined by Hausner's ratio and Carr's index. PPP also showed good functional characteristics with 3.24 g/g water absorption index, 7.9% water solubility index, 1.25 g/g oil absorption capacity, and 4.65% swelling power. Based on its excellent qualities, PPP was used to prepare cookies which were analyzed for its structural and spectral characteristics. The X-ray diffraction pattern of PPP and cookies revealed that the crystalline region in the latter remained intact. The FTIR spectra showed the presence of different functional groups in PPP and cookies. The study showed that PPP could be utilized as a beneficial ingredient in dietetic products such as baked goods due to its good water-holding capacity, oil-holding capacity and dietary fiber content.
Collapse
Affiliation(s)
- Gazia Nasir
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, U.P. India
| | - Sadaf Zaidi
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, U.P. India
| | - Asfaq Siddiqui
- Department of Agriculture, Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow, Uttar Pradesh India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand India
| |
Collapse
|
10
|
Çam G, Akın N, Konak Göktepe Ç, Demirci T. Pea (Pisum sativum L.) pod powder as a potential enhancer of probiotic Enterococcus faecium M74 in ice cream and its physicochemical, structural, and sensory effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3184-3193. [PMID: 36240011 DOI: 10.1002/jsfa.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In this study, pea (Pisum sativum L.) pod powder (PPP) was incorporated (1% and 3% w/w) into a probiotic ice cream formulation containing Enterococcus faecium M74 to investigate the potential effect of PPP on the probiotic survivability in the ice cream throughout 60 days of frozen storage. Moreover, the produced symbiotic ice creams were evaluated for their physiochemical properties, stability, and sensory acceptability. RESULTS Incorporation of PPP into ice cream caused significantly (P < 0.05) increased protein and ash content and lower pH values. Besides that, the addition of PPP resulted in ice creams with higher hardness and lower overrun. A significant diminishing was observed in the melting rates of the ice creams as the percentage of PPP increased and storage time progressed. Ice cream with PPP presented lower lightness and higher greenness and yellowness compared with control. All ice creams had viable counts of E. faecium M74 of ≥6 log cfu g-1 during storage and provided the number of viable cells that the probiotic product should contain. On day 60, the viability of E. faecium M74 in ice cream containing 1% PPP (7.64 ± 0.02) was higher than the control (7.28 ± 0.00). Sensory analyses revealed that there was no statistical difference in ice cream with 1% PPP and the control without PPP in terms of general acceptability. CONCLUSION These results suggest that pea pods, which is a waste product of the pea industry and obtained at zero cost, could be used as a potential prebiotic and an agent to improve technological properties of dairy products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gizem Çam
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Nihat Akın
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Çiğdem Konak Göktepe
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Talha Demirci
- Department of Food Engineering, Faculty of Agriculture, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Hadjout‐Krimat L, Belbahi A, Dahmoune F, Hentabli M, Boudria A, Achat S, Remini H, Oukhmanou‐Bensidhoum S, Spigno G, Madani K. Study of microwave and convective drying kinetics of pea pods (
Pisum sativum
L.): A new modeling approach using support vector regression methods optimized by dragonfly algorithm techniques. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lynda Hadjout‐Krimat
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Amine Belbahi
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Department of Microbiology and Biochemistry, Faculty of Sciences University of M'Sila M'Sila Algeria
| | - Farid Dahmoune
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira Bouira Algeria
| | - Mohamed Hentabli
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), Faculty of Technology University Yahia Fares of Médéa Médéa Algeria
| | - Asma Boudria
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Sabiha Achat
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Hocine Remini
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre Université de Bouira Bouira Algeria
| | - Sonia Oukhmanou‐Bensidhoum
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Giorgia Spigno
- DiSTAS—Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Centre de Recherche en Technologies Agro‐alimentaires (CRTAA) Bejaia Algeria
| |
Collapse
|
12
|
Mousa MMH, El-Magd MA, Ghamry HI, Alshahrani MY, El-Wakeil NHM, Hammad EM, Asker GAH. Pea peels as a value-added food ingredient for snack crackers and dry soup. Sci Rep 2021; 11:22747. [PMID: 34815462 PMCID: PMC8610970 DOI: 10.1038/s41598-021-02202-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
The food industry produces large quantities of waste, which is available in bulk at zero cost. This study aimed to investigate a new method to maximize the protein intake from pea peels and its further utilization as a value-added food ingredient to produce healthy snack crackers and dry soup. Dehydrated green curd of pea peel (DGCPp) with high protein content (35%) was prepared and incorporated into snack cracker and instant soup powder. Wheat flour was substituted with DGCPp to prepare crackers at three substitution levels (5, 10, and 15%) compared to the cracker control sample (100% wheat flour). Increasing the level of this substitution improved the nutritional value of crackers, with highest protein content was in DGCPp crackers (15%). Crackers also had higher contents of mineral and essential amino acids. The physicochemical and sensorial properties of soup samples were significantly influenced by the addition of DGCPp. Higher rehydration value and mineral content (Ca, Mg, Fe, and Zn) were observed in DGCPp soup samples compared to the control sample. Soup samples of all proportions were more acceptable by all the panelists compared with the control sample. With these findings, it can be concluded that DGCPp can be utilized in a variety of food products (such as crackers and soups) with higher nutritive values.
Collapse
Affiliation(s)
- Mona M H Mousa
- Food Science and Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammad Y Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Nora H M El-Wakeil
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Eman M Hammad
- Food Science and Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Galila A H Asker
- Food Science and Technology Department, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| |
Collapse
|
13
|
Singh R, Kaur S, Sachdev PA. A cost effective technology for isolation of potato starch and its utilization in formulation of ready to cook, non cereal, and non glutinous soup mix. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00887-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|