1
|
Mahmoud YAG, Elkaliny NE, Darwish OA, Ashraf Y, Ebrahim RA, Das SP, Yahya G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res 2025; 41:277-300. [PMID: 39891869 PMCID: PMC12037664 DOI: 10.1007/s12550-025-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
Collapse
Affiliation(s)
- Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar A Darwish
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Ain Shams, 11772, Egypt
| | - Rumaisa Ali Ebrahim
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Shankar Prasad Das
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt.
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
Zhang X, Jiao R, Ren Y, Wang Y, Li H, Ou D, Ling N, Ye Y. Adsorptive removal of aflatoxin B1 via spore protein from Aspergillus luchuensis YZ-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135148. [PMID: 38986415 DOI: 10.1016/j.jhazmat.2024.135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin commonly found in the environment. Finding efficient and environmentally friendly ways to remove AFB1 is critical. In this study, Aspergillus luchuensis YZ-1 demonstrated a potent ability to adsorb AFB1 for the first time, and the binding of AFB1 to YZ-1 is highly stable. Spores exhibited higher adsorption efficiency than mycelia, adsorbing approximately 95 % of AFB1 within 15 min. The spores were comprehensively characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. Various adsorption kinetic models (pseudo-first and pseudo-second order), adsorption isotherm models (Freundlich and Langmuir), Fourier transform infrared, and X-ray photoelectron spectroscopy were used to investigate the adsorption properties and mechanisms. The adsorption capacity of spores decreased with heating, urea, and SDS treatments, indicating that spore proteins may be the primary substance for AFB1 adsorption. Subsequent experiments showed that proteins with molecular weights greater than 50 kDa played a key role in the adsorption. Additionally, the spores possess excellent storage properties and are valuable for adsorbing AFB1 from vegetable oils. Therefore, the YZ-1 spores hold promise for development into a novel biosorbent for AFB1 removal.
Collapse
Affiliation(s)
- Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Kaur G, Sidhu GK, Kaur P, Kaur A. Influence of ozonation and roasting on functional, microstructural, textural characteristics, and aflatoxin content of groundnut kernels. J Texture Stud 2022; 53:908-922. [PMID: 36053754 DOI: 10.1111/jtxs.12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 12/30/2022]
Abstract
The present study was conducted to evaluate the influence of ozonation, roasting and their combination on the moisture content, color, functional, structural, textural components, and aflatoxins in groundnut kernels. Samples were subjected to three treatments namely, dry roasting (R): 166°C for 7 min; gaseous ozone treatment (O): 6 mg/L for 30 min; combined ozonation-roasting (OR): gaseous ozonation at 6 mg/L for 30 min followed by dry roasting at 166°C for 7 min. The ozonated-roasted samples had the lowest moisture content (3.45%), the highest total phenolic content (4.18 mg gallic acid equivalents/100 g), and antioxidants capacity (69.59%). The treatments did not induce significant changes in color of kernels (p < .05). Scanning electron microscopy indicated cracking of granules in roasted and swelling in ozonated kernels whereas more uniform orientation of granules was observed in ozonated-roasted kernels. Roasted and ozonated kernels indicated a significant reduction of fracturability force to 54.60 and 14.11%, respectively, whereas ozonated-roasted samples demonstrated a nonsignificant increase (4.37%). An increase in wave number of ozonated samples to 3,289.37 cm-1 in Fourier transform infrared (FTIR) spectrum (FTIR) indicated stretching in OH groups. FTIR spectrum of ozonated-roasted kernels suggested the formation of a new compound with CC and CC groups. The major aflatoxin B1 was reduced to maximum, that is, 100% in ozonated-roasted kernels followed by ozonated (80.95%) and roasted (57.14%) samples. The findings indicate that the ozonation-roasting treatment had a prominent role in the enhancement of functional compounds, structural and textural attributes along with the considerable reduction in aflatoxin content.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gagandeep Kaur Sidhu
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amarjit Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Appugol KA, Mangang IB, Shanmugasundaram S, Manickam L. Radiofrequency heating: A novel thermal‐treatment on the quality of peanut during disinfestation of
Caryedon serratus
and its potential in reducing aflatoxin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karuna Ashok Appugol
- Storage Entomology Laboratory, Department of Academics and HRD National Institute of Food Technology Entrepreneurship, and Management‐Thanjavur Tamil Nadu India
| | - Irengbam Barun Mangang
- Storage Entomology Laboratory, Department of Academics and HRD National Institute of Food Technology Entrepreneurship, and Management‐Thanjavur Tamil Nadu India
| | - S. Shanmugasundaram
- Planning and monitoring Cell National Institute of Food Technology Entrepreneurship, and Management‐Thanjavur Tamil Nadu India
| | - Loganathan Manickam
- Storage Entomology Laboratory, Department of Academics and HRD National Institute of Food Technology Entrepreneurship, and Management‐Thanjavur Tamil Nadu India
| |
Collapse
|