1
|
Sui X, Zhu Z, Cheng F, Zhang Y, Li T, Sun Y, Jiang X. Dynamic changes and correlation of quality, flavor and microorganisms of Mei (Prunus mume) vinegar during fermentation and clarification. Food Res Int 2024; 197:115209. [PMID: 39593295 DOI: 10.1016/j.foodres.2024.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Mei (Prunus mume) is a highly nutritious fruit whose value is often underutilized due to its perishable nature and challenges in post-maturation storage. This study evaluated the changes and correlations among quality, volatile flavor compounds (VFCs), and microorganisms in Mei vinegar (MV) during acetic acid fermentation (AAF) and low temperature clarification (LTC) using various clarifiers. The results indicated that AAF enhanced the bioactive components and antioxidant capacity of MV. A total of 73 VFCs were identified, comprising 9 alcohols, 28 esters, 5 aldehydes, 18 acids, 4 phenols, 1 ketone, 5 alkanes, and 3 others. Among these, the number and relative content of esters and acids exhibited dominance both in AAF and LTC. Firmicutes and Pediococcus were predominant at the phylum and genus levels, respectively. After 1 d of AAF, the relative abundances of Firmicutes and Pediococcus increased significantly, while LTC reduced their abundance. Among the 20 stable VFCs in MV, most esters and alcohols showed positive correlations with the top 10 bacteria at the phylum and genus levels, while certain acids were negatively correlated with these bacteria. Therefore, these findings offer valuable insights for the development of MV, the selection of clarifiers, and offer a theoretical basis for improving MV quality and flavor.
Collapse
Affiliation(s)
- Xiuyu Sui
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong, China
| | - Zhiqi Zhu
- Laizhou Meihao Agricultural Development Company, Laizhou 261431, Shandong, China
| | - Fansheng Cheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yichang Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong, China
| | - Tianhao Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong, China.
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109 Shandong, China.
| |
Collapse
|
2
|
Zare N, Sedighi M, Jalili H, Zare H, Maftoon Azad N. Evaluation of fig-milk dessert bioactive properties as a potential functional food. Food Sci Nutr 2024; 12:2692-2701. [PMID: 38628184 PMCID: PMC11016442 DOI: 10.1002/fsn3.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
The fig-milk dessert, a traditional and nutritionally rich treat infused with bioactive compounds, was subjected to a comprehensive analysis in this study. The novelty of this research lies in the investigation of the in vitro antioxidant, anticancer, and antimicrobial potential of the fig-milk dessert. This was accomplished through the utilization of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Annexin/propidium iodide staining, microtiter plate-based assay and agar well diffusion, respectively, for the first time. Additionally, the study assessed the total phenols and flavonoid content of the extract using the Folin-Ciocalteu assay and the aluminum chloride method, respectively. The findings revealed that the cooking method exerted a significant influence on the bioactive properties and nutritional composition of the dessert. Among the samples analyzed, CM1, consisting of figs steamed for 2 min and milk heated to 70°C, exhibited remarkable characteristics. This sample demonstrated the highest peptide concentration (1290 mg/L), superior antioxidant and anticancer activities, and favorable sensory attributes. Specifically, CM1 induced apoptosis in 84% of AGS cells and inhibited 68% of free radicals in the DPPH assay. It is noteworthy that the fig-milk dessert did not exhibit any antibacterial properties. These discerning results carry substantial implications for the development of functional dairy products endowed with both nutritional and potential therapeutic properties.
Collapse
Affiliation(s)
- Niloofar Zare
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of PharmacyBirjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
| | - Hamid Zare
- Fig Research Station, Fars Agricultural and Natural Resources Research and Education Center, AREEOEstahbanIran
| | - Neda Maftoon Azad
- Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| |
Collapse
|
3
|
Zhang B, Li K, Cheng H, Hu J, Qi X, Guo X. Effect of thermal treatments on volatile profiles and fatty acid composition in sweet corn ( Zea mays L.). Food Chem X 2023; 18:100743. [PMID: 37397213 PMCID: PMC10314213 DOI: 10.1016/j.fochx.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
This study analyzed the effects of thermal processing on volatiles and fatty acids in sweet corn. There were 27 volatiles measured in fresh samples, and 33, 21, and 19 volatiles identified in the steaming, blanching, and roasting groups, respectively. Relative odor activity values (ROAVs) showed that characteristic aroma-active volatiles of sweet corn after thermal treatments included: (E)-2-nonenal, 1-octen-3-ol, beta-myrcene, dimethyl trisulfide, 1-(4,5-dihydro-2-thiazolyl)-ethanone, and d-limonene. Thermal treatments significantly increased the unsaturated fatty acids (oleic acid and linolenic acid) of sweet corn by 110 to 183% compared to fresh samples. Meanwhile, many characteristic volatiles were found that derived from the oxidative cleavage of fatty acids. The sweet corn aroma obtained by steaming for 5 min was considered the closest to fresh corn. Our research provided insight into aroma composition of different thermally processed sweet corn and laid the foundation for further exploring the sources of aroma compounds in thermally processed sweet corn.
Collapse
Affiliation(s)
- Bing Zhang
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Kun Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - Hao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| | - Jianguang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - Xitao Qi
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics Improvement of Guangdong Province, Guangzhou 510640, China
| | - XinBo Guo
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China
| |
Collapse
|
4
|
Han Y, Du J. A comparative study of the effect of bacteria and yeasts communities on inoculated and spontaneously fermented apple cider. Food Microbiol 2023; 111:104195. [PMID: 36681399 DOI: 10.1016/j.fm.2022.104195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Understanding bacteria and yeasts communities can reduce unpredictable changes of apple cider. In this study, apple juice inoculated with Saccharomyces cerevisiae WET 136 and fermented spontaneously were compared, the relationships of bacteria, yeasts, organic acids, and volatiles were analyzed. Results showed that microbial diversity affected the fermentation, organic acids and volatiles in apple ciders. In the first four spontaneous fermentation days, LAB (lactic acid bacteria) multiplied and reached 7.89 lg CFU/mL, and then triggered malolactic fermentation (MLF), leading to malic acid decreased by 3880.52 mg/L and lactic acid increased by 4787.55 mg/L. The citric, succinic and fumaric acids content was 2171.14, 701.51 and 8.06 mg/L lower than that in inoculated cider, respectively. Although the yeasts multiplied during spontaneous fermentation, it did not reach 7.50 lg CFU/mL until the 5th day, which led to a long lag period, as well as later and lower production of acetaldehyde and higher alcohols. The inoculated yeast inhibited LAB, acetic acid bacteria, Rahnella, and non-Saccharomyces. Yeasts were the key to produce citric acid, acetaldehyde and 3-methyl-1-butanol in apple cider; while bacteria were closely related to the formation of lactic acid, acetic acid and ethyl acetate. It suggested that low higher alcohols and acetaldehyde can be realized by selecting yeasts, and Leuconostoc pseudomesenteroides can work as candidate to reduce L-malic and citric acids in apple cider.
Collapse
Affiliation(s)
- Yingying Han
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Ma J, Ma Y, Zhang H, Chen Z, Wen B, Wang Y, Huang W. The quality change of fig wine fermented by RV171 yeast during the six-month aging process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Han Y, Du J, Song Z. Effects of the yeast endogenous β-glucosidase on hawthorn (Crataegus pinnatifida Bunge) wine ethyl carbamate and volatile compounds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|