1
|
Guo M, Xian Y, Zhao X, Qian M, Li J, Zeng X, Bai W, Dong H. The latest advances on the formation, exposure level and control strategies of nitrosamines in meat, poultry and fish products. Food Chem 2025; 488:144837. [PMID: 40412210 DOI: 10.1016/j.foodchem.2025.144837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/22/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Nitrosamines have been widely detected in various meat, poultry and fish products. This review provided an in-depth analysis on the nitrosation mechanisms of nitrosamines in meat, poultry and fish products, revealing the specificity of nitrosamines generation across different food types. The mechanisms by which nitrosamines form harmful adducts within human cells were also discussed. Nitrosamines levels in various meat, poultry and fish products and effective strategies for their control were also summarized. Reducing precursor levels, blocking nitrosamines formation pathways, and promoting nitrosamines degradation are the main control strategies. Notably, developing starter cultures to replace traditional nitrites as additives has become a focal point of research. In addition, the significant potential of lactic acid bacteria in reducing nitrosamines levels in meat, poultry and fish products has been highlighted. This review gave a comprehensive and scientific reference for understanding the formation mechanism and control of nitrosamines in meat, poultry and fish products.
Collapse
Affiliation(s)
- Minting Guo
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Xiaojuan Zhao
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Jun Li
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Ganjeh AM, Gomes A, Barreira MJ, Pinto CA, Casal S, Saraiva JA. Effects of pressure-based technologies on food lipids oxidation. Food Chem 2024; 461:140768. [PMID: 39181051 DOI: 10.1016/j.foodchem.2024.140768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
The aim of this paper is to provide a thorough review of recent research on the effects of high pressure processing (HPP) and hyperbaric storage (HS) on lipid oxidation amounts in different food products, as well as the mechanisms of lipid oxidation during processing and storage. Globaly, highly perishable foods showed an increase in lipid oxidation when preserved by HPP. On the other hand, HS using lower pressure levels but much longer time under pressure seems to cause a higher level of secondary lipid oxidation products and a lower level of tertiary products, with HS so decreasing oxidation progress during storage. Existing studies have mainly focused on individual oxidation indicators, highlighting the need for a comprehensive analysis of primary, secondary, and tertiary oxidation products in order to fully understand the progression of oxidation. This comprehensive approach ensures a systematic assessment of lipid oxidation, leading to a clear understanding of the oxidation process.
Collapse
Affiliation(s)
- Alireza Mousakhani Ganjeh
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alexandrina Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Barreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Duma-Kocan P, Rudy M, Gil M, Żurek J, Stanisławczyk R, Krajewska A, Dziki D. The Influence of High Hydrostatic Pressure on Selected Quality Features of Cold-Storage Pork Semimembranosus Muscle. Foods 2024; 13:2089. [PMID: 38998594 PMCID: PMC11241588 DOI: 10.3390/foods13132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The primary objective of this investigation was to assess the influence of high hydrostatic pressure (HHP) and the duration of cold storage on the physicochemical, technological, and sensory attributes as well as the nutritional composition and shelf life of meat. The experimental framework involved utilizing samples derived from the semimembranosus muscle of pork. Each muscle obtained from the same carcass was segmented into six distinct parts, with three designated as control specimens (K) and the remaining subjected to vacuum packaging and subsequent exposure to high hydrostatic pressure (200 MPa at 20 °C for 30 min). Comprehensive laboratory analyses of the meat were conducted at 1, 7, and 10 days post slaughter. The meat was cold-stored at +3 ± 0.5 °C. The findings of the study elucidated that the application of high hydrostatic pressure exhibited a favorable impact on the extension of the raw meat's shelf life. The tests showed a significant (p < 0.05) decrease in the total number of microorganisms compared to the control sample after 7 (K: 4.09 × 105, HHP: 2.88 × 105 CFU/g) and 10 (K: 7.40 × 105, HHP: 2.42 × 105 CFU/g) days of cold storage. It was also found that using HHP increased the pH value after 1 (K: 5.54, HHP: 5.77) and 7 (K: 5.60, HHP: 5.87) days of storage.
Collapse
Affiliation(s)
- Paulina Duma-Kocan
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszów, Poland; (P.D.-K.); (M.G.); (R.S.)
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszów, Poland; (P.D.-K.); (M.G.); (R.S.)
| | - Marian Gil
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszów, Poland; (P.D.-K.); (M.G.); (R.S.)
| | - Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Ćwiklinskiej 2, 35-601 Rzeszów, Poland;
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszów, Poland; (P.D.-K.); (M.G.); (R.S.)
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
4
|
Martin D, Joly C, Dupas-Farrugia C, Adt I, Oulahal N, Degraeve P. Volatilome Analysis and Evolution in the Headspace of Packed Refrigerated Fish. Foods 2023; 12:2657. [PMID: 37509749 PMCID: PMC10378619 DOI: 10.3390/foods12142657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Fresh fish is a perishable food in which chemical (namely oxidation) and microbiological degradation result in undesirable odor. Non-processed fish (i.e., raw fish) is increasingly commercialized in packaging systems which are convenient for its retailing and/or which can promote an extension of its shelf-life. Compared to fish sent to its retail unpackaged, fish packaging results in a modification of the gaseous composition of the atmosphere surrounding it. These modifications of atmosphere composition may affect both chemical and microbiological degradation pathways of fish constituents and thereby the volatile organic compounds produced. In addition to monitoring Total Volatile Basic Nitrogen (TVB-N), which is a common indicator to estimate non-processed fish freshness, analytical techniques such as gas chromatography coupled to mass spectrometry or techniques referred to as "electronic nose" allow either the identification of the entire set of these volatile compounds (the volatilome) and/or to selectively monitor some of them, respectively. Interestingly, monitoring these volatile organic compounds along fish storage might allow the identification of early-stage markers of fish alteration. In this context, to provide relevant information for the identification of volatile markers of non-processed packaged fish quality evolution during its storage, the following items have been successively reviewed: (1) inner atmosphere gaseous composition and evolution as a function of fish packaging systems; (2) fish constituents degradation pathways and analytical methods to monitor fish degradation with a focus on volatilome analysis; and (3) the effect of different factors affecting fish preservation (temperature, inner atmosphere composition, application of hurdle technology) on volatilome composition.
Collapse
Affiliation(s)
- Doriane Martin
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Catherine Joly
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Coralie Dupas-Farrugia
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Isabelle Adt
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Nadia Oulahal
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| |
Collapse
|
5
|
Emerging Trends for Nonthermal Decontamination of Raw and Processed Meat: Ozonation, High-Hydrostatic Pressure and Cold Plasma. Foods 2022; 11:foods11152173. [PMID: 35892759 PMCID: PMC9330470 DOI: 10.3390/foods11152173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Meat may contain natural, spoilage, and pathogenic microorganisms based on the origin and characteristics of its dietary matrix. Several decontamination substances are used during or after meat processing, which include chlorine, organic acids, inorganic phosphates, benzoates, propionates, bacteriocins, or oxidizers. Unfortunately, traditional decontamination methods are often problematic because of their adverse impact on the quality of the raw carcass or processed meat. The extended shelf-life of foods is a response to the pandemic trend, whereby consumers are more likely to choose durable products that can be stored for a longer period between visits to food stores. This includes changing purchasing habits from “just in time” products “for now” to “just in case” products, a trend that will not fade away with the end of the pandemic. To address these concerns, novel carcass-decontamination technologies, such as ozone, high-pressure processing and cold atmospheric plasma, together with active and clean label ingredients, have been investigated for their potential applications in the meat industry. Processing parameters, such as exposure time and processing intensity have been evaluated for each type of matrix to achieve the maximum reduction of spoilage microorganism counts without affecting the physicochemical, organoleptic, and functional characteristics of the meat products. Furthermore, combined impact (hurdle concept) was evaluated to enhance the understanding of decontamination efficiency without undesirable changes in the meat products. Most of these technologies are beneficial as they are cost-effective, chemical-free, eco-friendly, easy to use, and can treat foods in sealed packages, preventing the product from post-process contamination. Interestingly, their synergistic combination with other hurdle approaches can help to substitute the use of chemical food preservatives, which is an aspect that is currently quite desirable in the majority of consumers. Nonetheless, some of these techniques are difficult to store, requiring a large capital investment for their installation, while a lack of certification for industrial utilization is also problematic. In addition, most of them suffer from a lack of sufficient data regarding their mode of action for inactivating microorganisms and extending shelf-life stability, necessitating a need for further research in this area.
Collapse
|
6
|
Sahoo M, Panigrahi C, Aradwad P. Management strategies emphasizing advanced food processing approaches to mitigate food borne zoonotic pathogens in food system. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Monalisa Sahoo
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Chirasmita Panigrahi
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Pramod Aradwad
- Division of Agricultural Engineering Indian Agricultural Research Institute New Delhi India
| |
Collapse
|
7
|
Rey MDLÁ, Rodriguez Racca A, Rossi Ribeiro L, Dos Santos Cruz F, Cap M, Mozgovoj MV, Cristianini M, Vaudagna SR. High‐pressure processing treatment of beef burgers: Effect on
Escherichia coli
O157 inactivation evaluated by plate count and PMA‐qPCR. J Food Sci 2022; 87:2324-2336. [DOI: 10.1111/1750-3841.16179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- María de los Ángeles Rey
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Anabel Rodriguez Racca
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Luma Rossi Ribeiro
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
- Quality and Safety of food and feed, Department of Horticultural Engineering Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam Germany
| | - Fabiano Dos Santos Cruz
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Mariana Cap
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Marina Valeria Mozgovoj
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| | - Marcelo Cristianini
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas Brazil
| | - Sergio Ramón Vaudagna
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables (UEDD INTA‐CONICET) Buenos Aires Argentina
| |
Collapse
|