1
|
He HJ, Li G, Obadi M, Ou X. An overview on the dry heat treatment (DHT) for starch modification: Current progress and prospective applications. Curr Res Food Sci 2025; 10:101007. [PMID: 40094064 PMCID: PMC11908613 DOI: 10.1016/j.crfs.2025.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Starch plays a pivotal role in numerous applications, making the enhancement of its functionality through physical processes increasingly important. Dry heat treatment (DHT) is a straightforward and eco-friendly technique that significantly improves starch characteristics and boosts food quality. This method has emerged as a focal point in starch modification research in recent years. This paper reviews current studies on the DHT of starches from various botanical sources, presenting key concepts and methodologies while delving into the impacts and mechanisms of DHT on the structural and physicochemical properties of starches. Furthermore, it elaborates on how additional components, such as ionic gums, amino acids, and sugars, can enhance the functionality of starches modified by DHT. Additionally, this review discusses the practical applications of dry heat-modified starches in the food industry, aiming to offer valuable insights for ongoing research and potential applications in enhancing food quality and functionality through innovative starch modifications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Guanglei Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Mohammed Obadi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xingqi Ou
- School of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
2
|
Dufour D, Rolland-Sabaté A, Mina Cordoba HA, Luna Melendez JL, Moreno Alzate JL, Pizzaro M, Guilois Dubois S, Sánchez T, Eiver Belalcazar J, Morante N, Tran T, Moreno-Santander M, Vélez-Hernández G, Ceballos H. Native and fermented waxy cassava starch as a novel gluten-free and clean label ingredient for baking and expanded product development. Food Funct 2022; 13:9254-9267. [PMID: 35980275 DOI: 10.1039/d2fo00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amylose-free and wild-type cassava starches were fermented for up to 30 days and oven- or sun-dried. The specific volume (ν) after baking was measured in native and fermented starches. The average ν (across treatments) for waxy starch was 3.5 times higher than that in wild-type starches (17.6 vs. 4.8 cm3 g-1). The best wild-type starch (obtained after fermentation and sun-drying) had considerably poorer breadmaking potential than native waxy cassava (8.4 vs. 16.4 cm3 g-1, respectively). The best results were generally obtained through the synergistic combination of fermentation (for about 10-14 days) and sun-drying. Fermentation reduced viscosities and the weight average molar mass led to denser macromolecules and increased branching degree, which are linked to a high loaf volume. The absence of amylose, however, was shown to be a main determinant as well. Native waxy starch (neutral in taste, gluten-free, and considerably less expensive than the current alternatives to cassava) could become a new ingredient for the formulation of clean label-baked or fried expanded products.
Collapse
Affiliation(s)
- Dominique Dufour
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Hansel A Mina Cordoba
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jorge Luis Luna Melendez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jhon Larry Moreno Alzate
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mónica Pizzaro
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Teresa Sánchez
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - John Eiver Belalcazar
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Nelson Morante
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Thierry Tran
- French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Montpellier, France. .,French Agricultural Research Centre for International Development, CIRAD, UMR Qualisud, Cali, Colombia.,Qualisud, Univ. Montpellier, CIRAD, Montpellier SupAgro, Univ. d'Avignon, Univ. de La Réunion, Montpellier, France.,CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | | | - Hernán Ceballos
- CGIAR Research Program on Roots, Tubers and Bananas (RTB), ABC: The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
3
|
Sumardiono S, Budiyono B, Kusumayanti H, Silvia N, Luthfiani VF, Cahyono H. Production and Physicochemical Characterization of Analog Rice Obtained from Sago Flour, Mung Bean Flour, and Corn Flour Using Hot Extrusion Technology. Foods 2021; 10:foods10123023. [PMID: 34945574 PMCID: PMC8701135 DOI: 10.3390/foods10123023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Extrusion technology allows the preparation of analog rice, an artificial product made of carbohydrate sources other than rice, with characteristics similar to natural rice. In this study, we aimed at determining the effect of composition and temperature on the nutritional content of analog rice obtained using heat extrusion technology. The physical properties and acceptability of the resulting product were also studied. Skim milk, sago, mung bean, and corn flour as well as the binder carboxymethyl cellulose (CMC) were used. The procedure was conducted in four stages: raw-material preparation, formulation, physicochemical evaluation, and sensory property evaluation. The best analog rice formula was established as 50% sago flour, 30% corn flour, 19.2% mung bean flour, 0.4% skim milk, and 0.4% CMC. The panelists’ most preferred rice analog formula was the one with the highest sago starch and skim milk content. The extrusion temperature did not significantly affect the nutrient content. However, it had a considerable impact on the thermal profile and physical properties, such as appearance and granular morphology.
Collapse
Affiliation(s)
- Siswo Sumardiono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia; (B.B.); (N.S.); (V.F.L.); (H.C.)
- Correspondence: ; Tel.: +62-24-7460-058; Fax: +62-24-7648-0675
| | - Budiyono Budiyono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia; (B.B.); (N.S.); (V.F.L.); (H.C.)
| | - Heny Kusumayanti
- Department of Industrial Chemical Engineering, Vocational School, Universitas Diponegoro, Semarang 50239, Indonesia;
| | - Nada Silvia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia; (B.B.); (N.S.); (V.F.L.); (H.C.)
| | - Virginia Feren Luthfiani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia; (B.B.); (N.S.); (V.F.L.); (H.C.)
| | - Heri Cahyono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia; (B.B.); (N.S.); (V.F.L.); (H.C.)
| |
Collapse
|