1
|
Wahba MI, Saleh SAA, Wahab WAA, Mostafa FA. Studies on the preparation of a sufficient carrier from egg protein and carrageenan for cellulase with optimization and application. Sci Rep 2025; 15:3868. [PMID: 39890870 PMCID: PMC11785800 DOI: 10.1038/s41598-025-88092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Egg protein (EP) concentration, pH, and glutaraldehyde (GA) concentration were optimized using Box Behnken design (BBD) to prepare GA-EP-Carr (Carrageenan) beads as a carrier for Aspergillus niger MK981235 cellulase. It was recommended that the concentrations of GA, and EP be set at 11.21% (w/v), 8% (w/w), and pH 3, respectively. It was determined that 60 °C and 2% for free form and 60 °C and 3% for im-cellulase were the optimum temperature and CMC concentration parameters for maximum enzyme activity. Free and im-cellulase were determined to have Km and Vmax of 2.22 mg.ml-1 and 1.76 µmol.ml-1.min-1, and 4.55 mg.ml-1 and 3.33 µmol.ml-1.min-1, respectively. Covalent coupling of A. niger cellulase to GA- EP- Carr beads improved its thermodynamic parameters T1/2 and D-values by 2.48, 2.01, and 2.36 times at 40, 50, and 60 °C, respectively. GA- EP- Carr im-cellulase was 100% active for 60 days at 4 °C and can be used for CMC hydrolysis for 20 successive cycles. GA- EP- Carr im-cellulase showed remarkable efficiency in the clarification of mango, peach, grape, and orange juices emphasized by TSS (total soluble solids), turbidity, and reducing sugar measurements for 3 successive cycles. GA- EP- Carr im-cellulase can be applied with high efficiency in juice industry.
Collapse
Affiliation(s)
- Marwa I Wahba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, 12622, Egypt
- Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, El-Behooth St., Dokki, Giza, Egypt
| | - Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, 12622, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, 12622, Egypt
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Institute, National Research Centre, El-Behooth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Khalid S, Zahid M, Chaudhary K, Naeem M, Mustafa M, Onyeaka H, Hafeez A, Amin S, Raana S. Unveiling the emerging trends of egg components-based biodegradable food packaging development: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13433. [PMID: 39217508 DOI: 10.1111/1541-4337.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.
Collapse
Affiliation(s)
- Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muqaddas Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muzammil Mustafa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Azka Hafeez
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sara Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sumbal Raana
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Li X, Li F, Zhang X, Tang W, Huang M, Huang Q, Tu Z. Interaction mechanisms of edible film ingredients and their effects on food quality. Curr Res Food Sci 2024; 8:100696. [PMID: 38444731 PMCID: PMC10912050 DOI: 10.1016/j.crfs.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Traditional food packaging has problems such as nondegradable and poor food safety. Edible films play an important role in food packaging, transportation and storage, having become a focus of research due to their low cost, renewable, degradable, safe and non-toxic characteristics. According to the different materials of edible films substrate, edible films are usually categorized into proteins, polysaccharides and composite edible films. Functional properties of edible films prepared from different substrate materials also vary, single substrate edible films are defective in some aspects. Functional ingredients such as proteins, polysaccharides, essential oils, natural products, nanomaterials, emulsifiers, and so on are commonly added to edible films to improve their functional properties, extend the shelf life of foods, improve the preservation of sensory properties of foods, and make them widely used in the field of food preservation. This paper introduced the classification, characteristics, and modification methods of common edible films, discussed the interactions among the substrate ingredients of composite edible films, the influence of functional ingredients on the properties of edible films, and the effects of modified edible films on the quality of food, aiming to provide new research ideas for the wide application and further study of edible films.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fenghong Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xuan Zhang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
4
|
Wu Y, Wang Y, Lv J, Jiao H, Liu J, Feng W, Sun C, Li X. Preparation and characterization of egg white protein film incorporated with epigallocatechin gallate and its application on pork preservation. Food Chem X 2023; 19:100791. [PMID: 37780287 PMCID: PMC10534098 DOI: 10.1016/j.fochx.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to develop the composite films with antioxidant and biodegradable activity based on egg white protein (EWP) and epigallocatechin gallate (EGCG). Water susceptibility, light transmittance, microstructure and antioxidant properties of the composite films without and with EGCG were fully characterized. It was noted that the addition of EGCG might decrease the moisture content, water solubility and swelling capacity. SEM micrographs revealed that discontinuous blocks and rough surfaces were caused by increasing concentration of EGCG, whereas compact and homogeneous particles appeared when the concentration of EGCG reached to 80 μmol/L. Moreover, the biodegradability of the composite films was demonstrated by the soil degradation properties that they can be almost completely degraded within ten days. Experimental results on the application in chilled fresh pork showed that the EWP-based films could play an antioxidant role when incorporated with EGCG, indicating their great potential for food packaging.
Collapse
Affiliation(s)
- Yue Wu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, China
| | - Jianhao Lv
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Han Jiao
- Anhui Rongda Food Co., Ltd., Guangde, Anhui 242200, China
| | - Jiahan Liu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenhui Feng
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chengfeng Sun
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
5
|
Structure and properties of egg white protein films modified by high-intensity ultrasound: An effective strategy. Food Res Int 2022; 157:111264. [DOI: 10.1016/j.foodres.2022.111264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
|