1
|
He Y, Liu T, Larsen DS, Lei Y, Huang M, Zhu L, Daglia M, Xiao X. Barley fermentation on nutritional constituents: structural changes and structure-function correlations. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39919835 DOI: 10.1080/10408398.2025.2461733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.
Collapse
Affiliation(s)
- Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Danaè S Larsen
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yuexin Lei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Wang P, Ma T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods 2024; 13:3204. [PMID: 39410237 PMCID: PMC11475031 DOI: 10.3390/foods13193204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Buckwheat is a valuable crop that contains various nutrients and functional components. Tartary buckwheat peptide is a protease-hydrolyzed protein with a wide range of physiological functions. Tartary buckwheat peptide produced through microbial fermentation can decrease the enzymatic digestion of buckwheat protein, which contributes to the bitter taste, and improve both the flavor and texture of buckwheat peptide products. In this study, microbial fermentation using probiotics was employed to prepare Tartary buckwheat peptides, and the preparation process was optimized. Based on single-factor experiments, the polypeptide content in the fermentation solution initially increased and then decreased with varying water content, inoculum concentration, glucose addition, fermentation temperature, fermentation time, and potassium dihydrogen phosphate addition. According to the response surface methodology, the maximum peptide content was achieved under fermentation conditions of 60.0% moisture content, 12.87% inoculum ratio, 2.0% glucose, and a fermentation temperature of 30.0 °C, with an actual value of (22.18 ± 1.02) mg/mL. The results show that fermentation with Lactiplantibacillus plantarum produces higher peptide levels and is safer than other microbial fermentation methods.
Collapse
Affiliation(s)
| | - Tingjun Ma
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China;
| |
Collapse
|
3
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
4
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024; 65:2343-2364. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
5
|
Li Y, Zhang Y, Dong L, Li Y, Liu Y, Liu Y, Liu L, Liu L. Fermentation of Lactobacillus fermentum NB02 with feruloyl esterase production increases the phenolic compounds content and antioxidant properties of oat bran. Food Chem 2024; 437:137834. [PMID: 37897817 DOI: 10.1016/j.foodchem.2023.137834] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In this study, strains producing feruloyl esterase were screened by Oxford Cup clear zones method and by evaluating the ability to decompose hydroxycinnamoyl esters. The strain was identified by 16S rDNA molecular biology. The contents of dietary fiber, reducing sugar, water-extractable arabinoxylans, phytic acid, total phenolics, total flavonoid, phenolic compounds composition, microstructure and antioxidant activity in bran before and after fermentation were studied. Eight strains producing feruloyl esterase were screened, among which strain P1 had the strongest ability to decompose hydroxycinnamoyl esters. The strain was identified and named L. fermentum NB02. Compared with unfermented bran, fermented bran exhibited higher contents of soluble dietary fiber, reducing sugar, water-extractable arabinoxylans, total phenolics, total flavonoid, and lower insoluble dietary fiber and phytic acid content. The dense surface structure of bran was destroyed, forming a porous structure. The release of phenolic compounds increased significantly. L. fermentum NB02 fermentation improved the antioxidant capacity of bran.
Collapse
Affiliation(s)
- Yueqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yunzhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588 NE, USA.
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
6
|
Ghamry M, Zhao W, Li L. Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum. Food Res Int 2023; 163:112142. [PMID: 36596097 DOI: 10.1016/j.foodres.2022.112142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to use a novel Lactobacillus strain (L. apis) isolated from the bee gut to develop a wheat bran (WB) deep-processing technology. Compared to the most popular strains (S. cerevisiae and L. plantarum), we found that L. apis had a greater ability to enhance the fermented WB antioxidant activity through hydroxyl radical scavenging, metal chelating ability, reducing power, and ferric reducing antioxidant power. While L. apis and L. plantarum had similar effects on DPPH• and ABTS•+ scavenging activities. This improvement in antioxidant activity has been associated with some metabolic compounds, such as sinapic acid, hydroferulic acid, pyruvic acid, neocostose, oxalic acid, salicylic acid, and schaftoside. Furthermore, L. apis degraded 48.33% of the phytic acid in WB, higher than S. cerevisiae (26.73%) and L. plantarum (35.89%). All strains improved the volatile profile of WB, and the fermented WB by each strain displayed a unique volatile composition. L. apis increased the level of conditional amino acids and branched-chain amino acids significantly. S. cerevisiae increased γ-aminobutyric acid the most, from 230.8 mg/L in unfermented samples to 609.8 mg/L in the fermented WB. While L. apis and L. plantarum also increased the level of γ-aminobutyric acid to 384.5 mg/L and 295.04 mg/L, respectively. Finally, we found that L. apis remarkably increased the content of organic acids and water-soluble vitamins in wheat bran.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|