1
|
Cai Z, Zhou S, Zhang T, Du Q, Tu M, Wu Z, Zeng X, Dang Y, Liu Z, Pan D, Liu Q. Synergistic enhancement of bio-yogurt properties by Lactiplantibacillus plantarum NUC08 and mulberry fruit extract. Food Chem 2025; 468:142447. [PMID: 39689487 DOI: 10.1016/j.foodchem.2024.142447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Lactiplantibacillus plantarum NUC08, a novel probiotic strain, has demonstrated potential for synergistic fermentation with starter cultures. This study investigates its functional properties in fermented milk and examines how mulberry fruit extract (MFE), rich in bioactive compounds, may influence its fermentation performance. MFE significantly boosted LAB growth, improved texture and rheological properties, and enhanced antioxidant capacity in the probiotic yogurt. GC-MS analysis revealed that MFE enriched the flavor profile by increasing key flavor-related metabolites, contributing to superior sensory qualities. Furthermore, the combination of L. plantarum NUC08 and MFE led to distinct shifts in metabolic pathways, as shown by LC-MS analysis, amplifying the regulatory effects on antioxidant activity. These findings demonstrate the synergy between MFE and L. plantarum NUC08, where MFE enhances the growth and functionality of L. plantarum NUC08, improving the yogurt's physicochemical properties, antioxidant capacity, and flavor, with potential for functional dairy product development.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Shou Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China.
| | - Qianqian Liu
- Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Xu X, Feng W, Guo L, Huang X, Shi B. Controlled synthesis of distiller's grains biochar for turbidity removal in Baijiu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161382. [PMID: 36621480 DOI: 10.1016/j.scitotenv.2022.161382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Resource utilization of distiller's grains (DGs) is crucial for realizing sustainable development of Baijiu industry. In the prevent investigation, a low-cost activated biochar (DGABC) suitable for removing turbidity from low-alcohol Baijiu was prepared by the controlled pyrolysis of DGs, followed by steam activation. The as-prepared biochar featured a large specific surface area (320-480 m2/g) and pore volume (0.45-0.47 cm3/g). Importantly, the DGABC possessed remarkable exterior hydrophily and interior lipophilicity, which guaranteed its good dispersion in alcohol-water system as well as an efficient adsorption to the components with long lipophilic chain. As a result, the DGABC could efficiently remove the turbidity in low-alcohol Baijiu, which was mainly derived from the long lipophilic chain components, such as ethyl palmitate. Meanwhile, most of the flavor esters that had a shorter lipophilic chain and lower hydrophobicity were well kept in the low-alcohol Baijiu. Therefore, this work provided a promising strategy for DGs recycling in Baijiu industry.
Collapse
Affiliation(s)
- Xiuzhen Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weiqin Feng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lijun Guo
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xin Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Taş NG, Kocadağlı T, Gökmen V. Safety concerns of processed foods in terms of neo-formed contaminants and NOVA classification. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|