1
|
Bisht V, Das B, Navani NK. Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4070-4084. [PMID: 39092901 DOI: 10.1002/jsfa.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Concerns about food safety have consistently driven the exploration of potent antimicrobials with probiotic origins. Identification of probiotic-derived bacteriocins as robust alternatives to antibiotics has gained traction following the COVID-19 pandemic. Additionally, the global market is witnessing an increasing preference for minimally processed food products free from chemical additives. Another contributing factor to the search for potent antimicrobials is the escalating number of infections caused by antibiotic-resistant bacteria and the need to mitigate the significant damage inflicted on the commensal human microbiota by broad-spectrum antibiotics. As an alternative bio-preservation strategy, there is substantial enthusiasm for the use of bacteriocins or starter cultures producing bacteriocins in preserving a variety of food items. This review specifically focuses on bacteriocins originating from lactic acid bacteria associated with fermented foods and explores their technological applications as nanobiotics. The food-grade antibiotic alternatives, whether utilized independently or in combination with other antimicrobials and administered directly or encapsulated, are anticipated to possess qualities of safety, stability and non-toxicity suitable for application in the food sector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
2
|
Wang Y, Liu L, Hou S. Surface engineering as a potential strategy to enhance desiccation tolerance of beneficial bacteria. Front Microbiol 2025; 16:1576511. [PMID: 40291806 PMCID: PMC12021878 DOI: 10.3389/fmicb.2025.1576511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Desiccation can diminish the viability of beneficial bacteria by over 90%, threatening their effectiveness in agricultural productivity and probiotic applications. Bacterial surface engineering, already proven to combat acidic environments and oxidative damage, offers promising avenues for mitigating desiccation stress. This Perspective explores and adapts these approaches-spanning bioinspired coatings, encapsulation methods, and nanotechnology-to significantly improve bacterial survival under dehydration. By slowing water loss, preserving membrane integrity, and minimizing oxidative damage, surface engineering paves the way for scalable and effective strategies to bolster bacterial resilience in demanding environments.
Collapse
Affiliation(s)
| | - Lei Liu
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Shuai Hou
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Elsayed EM, Farghali AA, Zanaty MI, Abdel-Fattah M, Alkhalifah DHM, Hozzein WN, Mahmoud AM. Poly-Gamma-Glutamic Acid Nanopolymer Effect against Bacterial Biofilms: In Vitro and In Vivo Study. Biomedicines 2024; 12:251. [PMID: 38397853 PMCID: PMC10887140 DOI: 10.3390/biomedicines12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a biodegradable poly-gamma-glutamic-acid nanopolymer (Ɣ-PGA NP) was investigated for its activity against clinical strains of Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli), and reference strains of S. aureus ATCC 6538, S. pyogenes ATCC 19615 (Gram-positive), and Gram-negative E. coli ATCC 25922, and K. pneumoniae ATCC 13884 bacterial biofilms. The minimum inhibitory concentration (MIC) effect of Ɣ-PGA NP showed inhibitory effects of 0.2, 0.4, 1.6, and 3.2 μg/mL for S. pyogenes, S. aureus, E. coli, and K. pneumoniae, respectively. Also, MIC values were 1.6, 0.8, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Afterwards, MBEC (minimum biofilm eradication concentration) and MBIC (minimum biofilm inhibitory concentration) were investigated to detect Ɣ-PGA NPs efficiency against the biofilms. MBEC and MBIC increased with increasing Ɣ-PGA NPs concentration or time of exposure. Interestingly, MBIC values were at lower concentrations of Ɣ-PGA NPs than those of MBEC. Moreover, MBEC values showed that K. pneumoniae was more resistant to Ɣ-PGA NPs than E. coli, S. aureus, and S. pyogenes, and the same pattern was observed in the reference strains. The most effective results for MBEC were after 48 h, which were 1.6, 0.8, 0.4, and 0.2 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. Moreover, MBIC results were the most impactful after 24 h but some were the same after 48 h. MBIC values after 48 h were 0.2, 0.2, 0.2, and 0.1 μg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. The most effective results for MBEC were after 24 h, which were 1.6, 0.8, 0.4, and 0.4 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Also, MBIC results were the most impactful after an exposure time of 12 h. MBIC values after exposure time of 12 h were 0.4, 0.4, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Besides that, results were confirmed using confocal laser scanning microscopy (CLSM), which showed a decrease in the number of living cells to 80% and 60% for MBEC and MBIC, respectively, for all the clinical bacterial strains. Moreover, living bacterial cells decreased to 70% at MBEC while decreasing up to 50% at MBIC with all bacterial refence strains. These data justify the CFU quantification. After that, ImageJ software was used to count the attached cells after incubating with the NPs, which proved the variation in live cell count between the manual counting and image analysis methods. Also, a scanning electron microscope (SEM) was used to detect the biofilm architecture after incubation with the Ɣ-PGA NP. In in vivo wound healing experiments, treated wounds of mice showed faster healing (p < 0.00001) than both the untreated mice and those that were only wounded, as the bacterial count was eradicated. Briefly, the infected mice were treated faster (p < 0.0001) when infected with S. pyogenes > S. aureus > E. coli > K. pneumoniae. The same pattern was observed for mice infected with the reference strains. Wound lengths after 2 h showed slightly healing (p < 0.001) for the clinical strains, while treatment became more obvious after 72 h > 48 h > 24 h (p < 0.0001) as wounds began to heal after 24 h up to 72 h. For reference strains, wound lengths after 2 h started to heal up to 72 h.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Mohamed I. Zanaty
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed M. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| |
Collapse
|
4
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
5
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Liu C, Shen Y, Yang M, Chi K, Guo N. Hazard of Staphylococcal Enterotoxins in Food and Promising Strategies for Natural Products against Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2450-2465. [PMID: 35170308 DOI: 10.1021/acs.jafc.1c06773] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus frequently contaminate food and cause serious foodborne diseases but are ignored during food processing and even cold-chain storage. Notably, SEs are stable and resistant to harsh sterilization environments, which can induce more serious hazards to public health than the bacterium itself. Therefore, it is necessary to develop promising strategies to control SE contamination in food and improve food safety. Natural products not only have various pharmaceutical properties, such as antimicrobial and antitoxin activities, but they are also eco-friendly, safe, nutritive, and barely drug-resistant. Here, the hazards of SEs and the promising natural compounds with different inhibitory mechanisms are summarized and classified. The key points of future research and applications for natural products against bacterial toxin contamination in food are also prospected. Overall, this review may provide enlightening insights for screening effective natural compounds to prevent foodborne diseases caused by bacterial toxins.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
7
|
Lin L, Luo C, Li C, Chen X, Cui H. A Novel Biocompatible Ternary Nanoparticle with High Antibacterial Activity: Synthesis, Characterization, and Its Application in Beef Preservation. Foods 2022; 11:foods11030438. [PMID: 35159588 PMCID: PMC8834416 DOI: 10.3390/foods11030438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
Edible nanoparticles containing antibacterial agents are one of the effective strategies to control foodborne diseases. Herein, novel ternary nanoparticles (TNP) were prepared from rosemary essential oil (REO), nisin and Lycium barbarum polysaccharides (LBP) through hydrophobic and electrostatic interaction. The average particle size of TNP was 211.5 nm, and its encapsulation efficiency reached 86.6%. After the addition of LBP, the physical stability, thermal stability and storage stability of TNP were significantly improved. In vitro, compared with the control group, the population of S. aureus and E. coli O157:H7 in the TNP-treated group was reduced by 2.386 log CFU/mL and 1.966 log CFU/mL, respectively, on the fifth day. The free radical scavenging rate of TNP was 63.15%. The application of TNP on beef presented favorable preservation effects without affecting its color and texture. Therefore, the synthesis strategy of TNP has important reference significance for the research and development of new food antibacterial agents.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.L.); (C.L.); (X.C.)
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China;
| | - Chencheng Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.L.); (C.L.); (X.C.)
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China;
| | - Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.L.); (C.L.); (X.C.)
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (L.L.); (C.L.); (X.C.)
- Correspondence:
| |
Collapse
|
8
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Zhang Y, Zhao C, Zhao X, He Y. Application of ε-polylysine in extending the storage period of pork jerky. Food Sci Nutr 2021; 9:3250-3257. [PMID: 34136189 PMCID: PMC8194761 DOI: 10.1002/fsn3.2289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
In this experiment, natural nontoxic preservative ε-polylysine (ε-PL) was used as a natural preservative in pork jerky. The pork jerky samples with ε-PL (experimental group) and without ε-PL (blank group) were stored at the 27 and 37℃. Then, the number of microorganisms, total volatile basic nitrogen (TVB-N), pH, and water activity (Aw) of each group were tested to test the antiseptic effect of ε-PL. The results showed that due to the Staphylococcus aureus was detected, the storage period of the blank group at 27 and 37°C was 15 and 9 days, respectively. However, Coliforms, Staphylococcus aureus, Salmonella, and Shigella were not detected in the experimental group on the 60th day. The experimental group all accord with the national standard for the quantity of microorganisms in meat jerky. The TVB-N content of the blank group reached 14.00 mg/100 g (15th day, 27°C) and 14.93 mg/100 g (9th day, 37°C) at the end of the storage period, while the TVB-N content of the experimental group was 11.20 mg/100 g (60th day, 27℃) and 15.86 mg/100 g (60th day, 37℃), and the increase rate of TVB-N in the blank group was greater than the experimental group, indicating that ε-PL can play a better microbial stabilization effect in pork jerky. The test of pH and Aw showed that ε-PL can stabilize the quality of pork jerky. Finally, the antiseptic effect of ε-PL was comparable to many chemical preservatives. This experiment confirms that ε-PL played an important role in extending the storage period of pork jerky.
Collapse
Affiliation(s)
- Yizhuo Zhang
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Changqing Zhao
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Xingxiu Zhao
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| | - Yiguo He
- College of BioengineeringSichuan University of Science and EngineeringYibinChina
| |
Collapse
|
10
|
Kaur R, Kaur L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107678] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Novel design for alginate/resistant starch microcapsules controlling nisin release. Int J Biol Macromol 2020; 153:1186-1192. [DOI: 10.1016/j.ijbiomac.2019.10.248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/21/2022]
|
12
|
Zhang C, Ren HX, Zhong CQ, Wu D. Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Sci Rep 2020; 10:3705. [PMID: 32111901 PMCID: PMC7048832 DOI: 10.1038/s41598-020-60729-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
Waste biomass from γ-polyglutamic acid production was used as an adsorbent to remove Cr(VI) from wastewater. Waste biomass was entrapped in sodium alginate to enhance performance. Orthogonal array design was used to optimize biosorption of Cr(VI) by immobilized waste biomass. The optimal adsorption conditions for immobilized waste biomass were as follows: pH 7.0, initial Cr(VI) concentration of 200 mg/L, 35 °C, waste biomass of 2 g/L, 60 min. Under these conditions, the absorption efficiency of Cr(VI) was 96.38 ± 0.45%. When the waste biomass was treated with 1 mol/L HCl for 1 h, the desorption rate could reach 94.42 ± 0.87%. It was shown that the adsorption kinetics followed the Freundlich adsorption model, indicating that the adsorption of Cr(VI) by bacteria was mainly based on multi-molecular layer adsorption. The absorption conditions of waste biomass were mild (pH 6.0-7.5, 20-35 °C) and easily operated. These investigations lay a foundation for reducing the pollution of γ-polyglutamic acid production, turning the biomass waste into a useful adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Chao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China.,Co-Innovation Center of Green Building, JiNan, 250101, China
| | - Hui-Xue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China.,Co-Innovation Center of Green Building, JiNan, 250101, China
| | - Chuan-Qing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China.,Co-Innovation Center of Green Building, JiNan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, JiNan, 250101, China. .,Co-Innovation Center of Green Building, JiNan, 250101, China.
| |
Collapse
|
13
|
Ding F, Zhong Y, Wu S, Liu X, Zou X, Li H. Synthesis and characterization of quaternized agar in KOH/urea aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj03412f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quaternized agar (QA) is synthesized in KOH/urea aqueous solution and shows low melting and gelling temperatures and antibacterial properties.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuye Zhong
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Shuping Wu
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Xinghai Liu
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Xiaobo Zou
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Houbin Li
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| |
Collapse
|