1
|
Hu H, Zhang G, Liu J, Liu D, Deng S, Peng J, Lai W. Development of High-Performance and Multifunctional Nanoparticles Powered the Integrated Diagnosis and Treatment of Escherichia coli O157:H7. Anal Chem 2024; 96:5205-5214. [PMID: 38481140 DOI: 10.1021/acs.analchem.3c05519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pathogenic diseases that trigger food safety remain a noteworthy concern due to substantial public health, economic, and social burdens worldwide. It is vital for developing an integrated diagnosis and treatment strategy for bacteria, which could achieve quick detection of pathogenic bacteria and the inhibition of multidrug-resistant bacteria. Herein, we reported an organic molecule (M-3) possessed strong light capture capacity, emerging a low energy gap and ΔEST. Subsequently, M-3 was integrated into a nanostructured system (BTBNPs) with excellent ROS generation, light absorption capability, and photothermal performance. Reactive oxygen species (ROS) generated by BTBNPs were mainly free radicals from a type I mechanism, and the high photothermal conversion efficiency of BTBNPs was 41.26%. Benefiting from these advantages of BTBNPs, BTBNPs could achieve a ∼99% antibacterial effect for Escherichia coli O157:H7 with 20 μM dosage and 5 min of irradiation. Furthermore, the limit of detection (LoD) of the proposed BTBNPs-LFIA (colorimetric and photothermal modalities) for detecting E. coli O157:H7 was 4105 and 419 CFU mL-1, respectively. Overall, this work is expected to provide a new and sophisticated perspective for integrated diagnosis and treatment systems regarding pathogenic bacteria.
Collapse
Affiliation(s)
- Hong Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Jie Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, 330096 Nanchang, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 330047 Nanchang, China
| |
Collapse
|
2
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
3
|
Zhao Y, Huang S, Chao M, Wang Y, Liu P, Li P, Fang X, Routledge MN, Peng C, Zhang C. Highly resistant and sensitive colorimetric immunochromatographic assay for sibutramine (SBT) illegally adulterated into diet food based on PDA/AuNP labelling. Analyst 2023; 148:5094-5104. [PMID: 37671915 DOI: 10.1039/d2an02094g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A gold nanoparticle (AuNP) based immunochromatographic assay strip is a valuable tool for monitoring chemicals in foods. However, the sensitive ICA strip for SBT is rarely reported due to the fact that monoclonal antibodies (mAbs) against SBT with high affinity are commercially unavailable. Herein, a monoclonal antibody against SBT was prepared through a designed hapten with a carboxyl end-capped space arm. The obtained mAb showed high affinity for SBT and N-desmethylsibutramine, a metabolite of SBT. Furthermore, a series of core-shell NPs, polydopamine (PDA) coated AuNPs (PDA/AuNPs) with controlled shell thickness and packing density were synthesized. The obtained PDA/AuNP-mAb conjugate demonstrated high tolerance to salt and good stability in a wide pH range, which is beneficial for improving the matrix interference common in ICA. As a result, PDA/AuNP-based ICA could quantify SBT in the range of 3.39-69.60 ng mL-1 with a limit of detection (LOD) of 0.98 ng mL-1. This novel ICA improved the sensitivity of the traditional AuNP-based ICA by nearly 12 times. Method validation was conducted with spiked samples of slimming food and human serum and compared with HPLC-MS/MS. Consistent results indicated that high sensitivity, accuracy, and reliability of the PDA/AuNP-based ICA approach were achieved. To the best of our knowledge, this study reported the most sensitive immunoassay for SBT thus far.
Collapse
Affiliation(s)
- Yun Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Mengjia Chao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Yulong Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Pengyan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Pan Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Xuechen Fang
- College of Food Science and Technology, Nanchang University, Nanchang 330031, PR China
| | - Michael N Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China and International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, China
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
- College of Food Science and Technology, Nanchang University, Nanchang 330031, PR China
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Biorecognition elements appended gold nanoparticle biosensors for the detection of food-borne pathogens - A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Cui H, Yang X, Li C, Ye Y, Chen X, Lin L. Enhancing anti-E. coli O157:H7 activity of composite phage nanofiber film by D-phenylalanine for food packaging. Int J Food Microbiol 2022; 376:109762. [DOI: 10.1016/j.ijfoodmicro.2022.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
|
6
|
Wangman P, Surasilp T, Pengsuk C, Sithigorngul P, Longyant S. Development of a
species‐specific
monoclonal antibody for rapid detection and identification of foodborne pathogen
Vibrio vulnificus. J Food Saf 2021. [DOI: 10.1111/jfs.12939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pradit Wangman
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Thanai Surasilp
- Major of General Science, Department of Science and Technology, Faculty of Liberal Arts and Science Roi Et Rajabhat University Roi Et Thailand
| | - Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Paisarn Sithigorngul
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Siwaporn Longyant
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
| |
Collapse
|
7
|
Hsieh WY, Lin CH, Lin TC, Lin CH, Chang HF, Tsai CH, Wu HT, Lin CS. Development and Efficacy of Lateral Flow Point-of-Care Testing Devices for Rapid and Mass COVID-19 Diagnosis by the Detections of SARS-CoV-2 Antigen and Anti-SARS-CoV-2 Antibodies. Diagnostics (Basel) 2021; 11:1760. [PMID: 34679458 PMCID: PMC8534532 DOI: 10.3390/diagnostics11101760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020-2021. COVID-19 is becoming one of the most fatal pandemics in history and brings a huge challenge to the global healthcare system. Opportune detection, confinement, and early treatment of infected cases present the first step in combating COVID-19. Diagnosis via viral nucleic acid amplification tests (NAATs) is frequently employed and considered the standard procedure. However, with an increasing urge for point-of-care tests, rapid and cheaper immunoassays are widely utilized, such as lateral flow immunoassay (LFIA), which can be used for rapid, early, and large-scale detection of SARS-CoV-2 infection. In this narrative review, the principle and technique of LFIA applied in COVID-19 antigen and antibody detection are introduced. The diagnostic sensitivity and specificity of the commercial LFIA tests are outlined and compared. Generally, LFIA antigen tests for SARS-CoV-2 are less sensitive than viral NAATs, the "gold standard" for clinical COVID-19 diagnosis. However, antigen tests can be used for rapid and mass testing in high-risk congregate housing to quickly identify people with COVID-19, implementing infection prevention and control measures, thus preventing transmission. LFIA anti-SARS-CoV-2 antibody tests, IgM and/or IgG, known as serology tests, are used for identification if a person has previously been exposed to the virus or vaccine immunization. Notably, advanced techniques, such as LFT-based CRISPR-Cas9 and surface-enhanced Raman spectroscopy (SERS), have added new dimensions to the COVID-19 diagnosis and are also discussed in this review.
Collapse
Affiliation(s)
- Wen-Yeh Hsieh
- Department of Internal Medicine, Division of Chest Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu 30068, Taiwan;
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (C.-H.L.); (H.-F.C.); (C.-H.T.)
| | - Tzu-Ching Lin
- Department of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chao-Hsu Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (C.-H.L.); (H.-F.C.); (C.-H.T.)
- Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (C.-H.L.); (H.-F.C.); (C.-H.T.)
- Department of Internal Medicine, Division of Endocrinology, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (C.-H.L.); (H.-F.C.); (C.-H.T.)
- Department of Internal Medicine, Division of Pulmonary Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, College of Agriculture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (C.-H.L.); (H.-F.C.); (C.-H.T.)
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|