1
|
Ou D, Wu Y, Zhang J, Liu J, Liu Z, Shao M, Guo X, Cui S. MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochem Genet 2024; 62:1657-1674. [PMID: 37667096 DOI: 10.1007/s10528-023-10484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.
Collapse
Affiliation(s)
- Deming Ou
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China.
| | - Ying Wu
- Department of Stomatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jibin Zhang
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Jun Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Zeyu Liu
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Minfeng Shao
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Xiaoying Guo
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| | - Shiman Cui
- Department of Stomatology, Panyu Central Hospital, Guangzhou, 511400, China
| |
Collapse
|
2
|
Hashemi M, Aparviz R, Beickzade M, Paskeh MDA, Kheirabad SK, Koohpar ZK, Moravej A, Dehghani H, Saebfar H, Zandieh MA, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Samarghandian S. Advances in RNAi therapies for gastric cancer: Targeting drug resistance and nanoscale delivery. Biomed Pharmacother 2023; 169:115927. [PMID: 38006616 DOI: 10.1016/j.biopha.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Aparviz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzie Beickzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Moravej
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Wang Y, Huang J, Zhang F, Shen K, Qiu B. Knock-down of IGFBP2 ameliorates lung fibrosis and inflammation in rats with severe pneumonia through STAT3 pathway. Growth Factors 2023; 41:210-220. [PMID: 37735894 DOI: 10.1080/08977194.2023.2259497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE To observe the mechanism of IGFBP2 knock-down in improving lung fibrosis and inflammation through STAT3 pathway in rats with severe pneumonia. MATERIALS AND METHODS First, SP rat model was established. Then rats were divided into the Control group, the SP group, the SP + Lv-vector shRNA group, the SP + Lv-IGFBP2 shRNA group, the SP + Lv-vector group, and the SP + Lv-IGFBP2 group. The mRNA and protein levels of IGFBP2, NOS, CD206 and Arg 1 were detected by RT-qPCR and Western blot. IHC was used to check the positive expression of IGFBP2 and MCP1. A fully automated blood gas analyzer was used to detected PaCO2, CO2 content, PaO2 and SaO2. HE and Masson staining were performed to observe the lung tissue injury and collagen deposition of rats in each group. ELISA assays were used to calculate the levels of inflammatory factors IL-1β, IL-6, TNF-α, IL-4, and IL-10. Flow cytometry was conducted to acquire the ratio of M1-type AMs and M2-type AMs. RESULTS Compared with the Control group, IGFBP2, iNOS, CD206, and Arg1 mRNA and protein expression levels, IGFBP2 and MCP1 positive expressions, PaCO2, p-STAT3/STAT3, p-JAK2/JAK2, IL-1β, IL-6, and TNF-α levels, the number of AMs and neutrophils, the proportion of M1 type AMs and the expressions of α-SMA, Collagen-I, Collagen III, and Fibronectin were significantly increased in SP rats (p < 0.05), while PaCO2, CO2, and SaO2, IL-4 and IL-10 levels, and the proportion of M2 type AMs decreased (p < 0.05). However, the knockdown of IGFBP2 reversed the above index trends. CONCLUSION Knock-down of IGFBP2 ameliorated lung injury in SP rats, inhibited inflammation and pulmonary fibrosis, and promoted M2-type transformation of AMs by activating the STAT3 pathway.
Collapse
Affiliation(s)
- Yuyu Wang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Jianjiang Huang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Fang Zhang
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Keli Shen
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| | - Bin Qiu
- Department of Critical Care Medicine, Shengzhou People's Hospital, the First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou, Zhejiang, China
| |
Collapse
|
4
|
Akhtar J, Imran M, Wang G. CRISPR/Cas9-Mediated CtBP1 Gene Editing Enhances Chemosensitivity and Inhibits Metastatic Potential in Esophageal Squamous Cell Carcinoma Cells. Int J Mol Sci 2023; 24:14030. [PMID: 37762332 PMCID: PMC10530806 DOI: 10.3390/ijms241814030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Innovative therapeutic strategies for esophageal squamous cell carcinoma (ESCC) are urgently required due to the limited effectiveness of standard chemotherapies. C-Terminal Binding Protein 1 (CtBP1) has been implicated in various cancers, including ESCC. However, the precise expression patterns and functional roles of CtBP1 in ESCC remain inadequately characterized. In this study, we aimed to investigate CtBP1 expression and its role in the resistance of ESCC to paclitaxel, an effective chemotherapeutic agent. Western blotting and immunofluorescence were applied to assess CtBP1 expression in the TE-1 and KYSE-50 cell lines. We observed the marked expression of CtBP1, which was associated with enhanced proliferation, invasion, and metastasis in these cell lines. Further, we successfully generated paclitaxel resistant ESCC cell lines and conducted cell viability assays. We employed the CRISPR/Cas9 genome editing system to disable the CtBP1 gene in ESCC cell lines. Through the analysis of the drug dose-response curve, we assessed the sensitivity of these cell lines in different treatment groups. Remarkably, CtBP1-disabled cell lines displayed not only improved sensitivity but also a remarkable inhibition of proliferation, invasion, and metastasis. This demonstrates that CtBP1 may promote ESCC cell malignancy and confer paclitaxel resistance. In summary, our study opens a promising avenue for targeted therapies, revealing the potential of CtBP1 inhibition to enhance the effectiveness of paclitaxel treatment for the personalized management of ESCC.
Collapse
Affiliation(s)
- Javed Akhtar
- Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Muhammad Imran
- Department of Computer Science & IT, Institute of Southern Punjab, Multan 60800, Pakistan;
| | - Guanyu Wang
- Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
5
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Zarin B, Eshraghi A, Zarifi F, Javanmard SH, Laher I, Amin B, Vaseghi G. A review on the role of tau and stathmin in gastric cancer metastasis. Eur J Pharmacol 2021; 908:174312. [PMID: 34245746 DOI: 10.1016/j.ejphar.2021.174312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer is resistant to chemotherapy, especially in the later stages. The prevalence of gastric cancer increases after the age of 40, and its peak is in the 7th decade of life. The proteins tau (tubulin associated unit) and stathmin are overexpressed in gastric cancer and contribute to the progression of the disease by increasing cancer cell proliferation, invasion, and inducing drug resistance. This review summarizes the current knowledge on the expression of tau protein and stathmin in gastric cancer and their roles in drug resistance. Medline and PubMed databases were searched from 1990 till February 2021 for the terms "tau protein", "stathmin", and "gastric cancer." Two reviewers screened all articles and assessed prognostic studies on the role of tau and stathmin proteins in gastric cancer progression. Collectively, studies reported that both proteins are expressed at different concentrations in gastric cancer and could be significant molecular biomarkers for prognosis. Both proteins could be good candidates for targeted therapy of gastric cancer and are associated with resistance to taxanes.
Collapse
Affiliation(s)
- Bahareh Zarin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Eshraghi
- Department of Clinical Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Zarifi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Rahimi AM, Nabavizadeh F, Ashabi G, Halimi S, Rahimpour M, Vahedian J, Panahi M. Probiotic Lactobacillus rhamnosus Supplementation Improved Capecitabine Protective Effect against Gastric Cancer Growth in Male BALB/c Mice. Nutr Cancer 2020; 73:2089-2099. [PMID: 33955797 DOI: 10.1080/01635581.2020.1832237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastric cancer (GC) is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Herein, we studied the effects of probiotics (Lactobacillus rhamnosus) on subcutaneous implantation of xenograft GC. Moreover, the effect of probiotics (L. rhamnosus) was compared with the capecitabine drug as known used drug against GC. Human GC tissue was obtained from patients with gastric adenocarcinoma and grafted into mice armpit. Probiotic (L. rhamnosus) was given to animals by gavage 2 weeks prior to GC and 4 weeks after GC induction. Also, capecitabine was orally added through feeding tube at the last week of treatment procedure. All grafted animals received cyclosporine a day before the surgery and during the study period to prevent graft rejection. Capecitabine-probiotic complex reduced the size of the axillary implanted GC when compared with control group. Furthermore, combination of capecitabine and probiotic increased apoptotic and necrotic responses in the grafted tumor, blood cells (red blood cells, white blood cells, and platelet counts) in comparison with capecitabine. Probiotic (L. rhamnosus) administration effectively improved the therapeutic index and outcomes, and also, improved the therapeutic effects of the capecitabine.
Collapse
Affiliation(s)
- Ahmad Mustafa Rahimi
- Department of Physiology, Medical school, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, Medical school, Tehran University of Medical Sciences, Tehran, Iran.,Electrophysiology Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Medical school, Tehran University of Medical Sciences, Tehran, Iran.,Electrophysiology Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rahimpour
- Department of Physiology, Medical school, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Vahedian
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio K, Shaik K, Yuan Y, Henriques V, Galzerano A, Yamashita T, Pinto MAF, Palma AM, Camacho D, Vieira A, Soldini D, Nakshatri H, Post SR, Rhiner C, Yamashita H, Accardi D, Hansen LA, Carvalho C, Beltran AL, Kuppusamy P, Gogna R, Moreno E. Flower isoforms promote competitive growth in cancer. Nature 2019; 572:260-264. [PMID: 31341286 DOI: 10.1038/s41586-019-1429-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In humans, the adaptive immune system uses the exchange of information between cells to detect and eliminate foreign or damaged cells; however, the removal of unwanted cells does not always require an adaptive immune system1,2. For example, cell selection in Drosophila uses a cell selection mechanism based on 'fitness fingerprints', which allow it to delay ageing3, prevent developmental malformations3,4 and replace old tissues during regeneration5. At the molecular level, these fitness fingerprints consist of combinations of Flower membrane proteins3,4,6. Proteins that indicate reduced fitness are called Flower-Lose, because they are expressed in cells marked to be eliminated6. However, the presence of Flower-Lose isoforms at a cell's membrane does not always lead to elimination, because if neighbouring cells have similar levels of Lose proteins, the cell will not be killed4,6,7. Humans could benefit from the capability to recognize unfit cells, because accumulation of damaged but viable cells during development and ageing causes organ dysfunction and disease8-17. However, in Drosophila this mechanism is hijacked by premalignant cells to gain a competitive growth advantage18. This would be undesirable for humans because it might make tumours more aggressive19-21. It is unknown whether a similar mechanism of cell-fitness comparison is present in humans. Here we show that two human Flower isoforms (hFWE1 and hFWE3) behave as Flower-Lose proteins, whereas the other two isoforms (hFWE2 and hFWE4) behave as Flower-Win proteins. The latter give cells a competitive advantage over cells expressing Lose isoforms, but Lose-expressing cells are not eliminated if their neighbours express similar levels of Lose isoforms; these proteins therefore act as fitness fingerprints. Moreover, human cancer cells show increased Win isoform expression and proliferate in the presence of Lose-expressing stroma, which confers a competitive growth advantage on the cancer cells. Inhibition of the expression of Flower proteins reduces tumour growth and metastasis, and induces sensitivity to chemotherapy. Our results show that ancient mechanisms of cell recognition and selection are active in humans and affect oncogenic growth.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher J Pelham
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Taylor M Parker
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Kimberly Fazio
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Kranti Shaik
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Tadashi Yamashita
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | | | | | - Ana Vieira
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - David Soldini
- Institute for Surgical Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven R Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | | | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | | | | | - Periannan Kuppusamy
- Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, Lisbon, Portugal. .,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | |
Collapse
|
9
|
Liu L, Lang Z, Wang P, Wang H, Cao Y, Meng X, Hu J, Feng Y. The nucleosome binding protein 1 promotes the growth of gastric cancer cells. J Cancer 2019; 10:1132-1137. [PMID: 30854121 PMCID: PMC6400668 DOI: 10.7150/jca.29292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023] Open
Abstract
Nucleosome binding protein 1 (NSBP1) is identified as a new member of HMGN family and is abnormally overexpressed in a variety of tumors. However, it remains unclear whether NSBP1 is overexpressed and promotes gastric cancer. In this study we employed RNAi mediated knockdown of NSBP1 to investigate potential oncogenic role of NSBP1 in gastric cancer. In BGC823 and SGC7901 gastric cancer cell lines, we showed that NSBP1 knockdown decreased cell proliferation while increased apoptosis in vitro. Western blot analysis showed that NSBP1 knockdown decreased the levels of anti-apoptotic protein Bcl-2 while increased the levels of pro-apoptotic protein Bax. In addition, NSBP1 knockdown inhibited the growth and increased the apoptosis of SGC7901 cells xenografted in nude mice. In conclusion, this study provides the first evidence that NSBP1 enhances the proliferation while inhibits the apoptosis of gastric cancer cells, and this is related to the regulation of the expression of apoptosis related proteins by NSBP1. These data suggest that NSBP1 plays oncogenic role in gastric cancer.
Collapse
Affiliation(s)
- Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Zhifang Lang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Pengyu Wang
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Hongwei Wang
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Yanli Cao
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Xianghui Meng
- Department of Dermatology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Jing Hu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Yukuan Feng
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| |
Collapse
|
10
|
In vivo and in vitro effects of hyperplasia suppressor gene on the proliferation and apoptosis of lung adenocarcinoma A549 cells. Biosci Rep 2018; 38:BSR20180391. [PMID: 30061179 PMCID: PMC6167497 DOI: 10.1042/bsr20180391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC). Hyperplasia suppressor gene (HSG) has been reported to inhibit cell proliferation, migration, and remodeling in cardiovascular diseases. However, there lacks systematic researches on the effect of HSG on the apoptosis and proliferation of lung adenocarcinoma A549 cells and data of in vivo experiments. The present study aims to investigate the effects of HSG gene silencing on proliferation and apoptosis of lung adenocarcinoma A549 cells. The human lung adenocarcinoma A549 cell was selected to construct adenovirus vector. Reverse transcription-quantitative PCR (RT-qPCR) and Western blot analysis were conducted to detect expressions of HSG and apoptosis related-proteins. Cell Counting Kit (CCK)-8 assay was performed to assess A549 cell proliferation and flow cytometry to analyze cell cycle and apoptosis rate. The BALB/C nude mice were collected to establish xenograft model. Silenced HSG showed decreased mRNA and protein expressions of HSG, and elevated A549 cell survival rates at the time point of 24, 48, and 72 h. The ratio of cells at G0/G1 phase and apoptosis rate decreased and the ratio of cells at S- and G2/M phases increased following the silencing of HSG. There were decreases of B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Caspase-3, and Caspase-8 expressions but increases in Bcl-2 induced by silenced HSG. As for the xenograft in nude mice, tumor volume increased, and apoptosis index (AI) decreased after HSG silencing. These results indicate that HSG gene silencing may promote the proliferation of A549 cells and inhibit the apoptosis. HSG may be a promising target for the treatment of lung adenocarcinoma.
Collapse
|
11
|
Yang Q, Zhou Y, Wang J, Fu W, Li X. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress. J Cell Biochem 2018; 120:3989-3997. [PMID: 30260030 DOI: 10.1002/jcb.27683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of the study was to explore the mechanism of excessive apoptosis of nucleus pulposus cells induced by short hairpin RNA (shRNA) Piezo type mechanosensitive ion channel component 1 (Piezo1) under abnormal mechanical stretch stress. METHODS In vitro mechanical stretch stress model of nucleus pulposus cells in vitro was established, in which the expression of Piezo1 was interfered by transfection of shRNA-Piezo1 interfering vector. Both messenger RNA and protein level of Piezo1 were measured by reverse-transcription polymerase chain reaction and Western blot analysis, respectively. Cytoplasmic Ca2+ was detected by Fluo3-AM kit, and changes of mitochondrial membrane potential in cells were detected using Cell Meter Assay kit. Finally, the apoptosis was evaluated with annexin V-fluorescein isothiocyanate kit. RESULTS The highest transfection efficiency of lentivirus titer was 1 × 10 TU/mL and the nucleus pulposus cells were transfected with plural multiplicity of infection = 50. Homo-3201 sequence exhibited the most effective silencing effect and was used in subsequent experiments as the default sequence of shRNA-Piezo1. The calcium content in the cytoplasm of the tension stress group increased significantly compared with that in the blank control group ( q = 3.773; P < 0.05). The level of cytosolic calcium in shRNA-interference group was significantly lower than that in stretch stress group ( q = 5.159; P < 0.05). Stretch stress treatment resulted in an elevated ratio of mitochondrial membrane potential turnover as opposed to blank control group ( q = 4.332; P < 0.05), while shRNA-interference group showed smaller ratio of mitochondrial membrane potential turnover than that in stretch stress group ( q = 4.974; P < 0.05). Similar results were also observed in apoptosis rate analysis ( q = 3.175; P < 0.05). CONCLUSION ShRNA-Piezo1 can protect cells by reducing the level of intracellular Ca2+ and the change of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Qining Yang
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Yongwei Zhou
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Jinhua Wang
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Weicong Fu
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| | - Xiaofei Li
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua, China
| |
Collapse
|
12
|
Guo C, Wang J, Yang M, Li Y, Cui S, Zhou X, Li Y, Sun Z. Amorphous silica nanoparticles induce malignant transformation and tumorigenesis of human lung epithelial cells via P53 signaling. Nanotoxicology 2017; 11:1176-1194. [DOI: 10.1080/17435390.2017.1403658] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caixia Guo
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Shuxiang Cui
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|
13
|
Cao Y, Zhang G, Wang P, Zhou J, Gan W, Song Y, Huang L, Zhang Y, Luo G, Gong J, Zhang L. Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer. BMC Gastroenterol 2017; 17:2. [PMID: 28056823 PMCID: PMC5217235 DOI: 10.1186/s12876-016-0561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Individualized therapeutic regimen is a recently intensively pursued approach for targeting diseases, in which the search for biomarkers was considered the first and most important. Thus, the goal of this study was to investigate whether the UGT1A1, ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A genes are underlying biomarkers for gastric cancer, which, to our knowledge, has not been performed. METHODS Ninety-eight tissue specimens were collected from gastric cancer patients between May 2012 and March 2015. A multiplex branched DNA liquidchip technology was used for measuring the mRNA expressions of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A. Direct sequencing was performed for determination of UGT1A1 polymorphisms. Furthermore, correlations between gene expressions, polymorphisms and clinicopathological characteristics were investigated. RESULTS The expressions of TYMS, TUBB3 and STMN1 were significantly associated with the clinicopathological characteristics of age, gender and family history of gastric cancer, but not with differentiation, growth patterns, metastasis and TNM staging in patients with gastric cancer. No clinical characteristics were correlated with the expressions of ERCC1, BRCA1, RRM1 and TOP2A. Additionally, patients carrying G allele at -211 of UGT1A1 were predisposed to developing tubular adenocarcinoma, while individuals carrying 6TAA or G allele respectively at *28 or -3156 of UGT1A1 tended to have a local invasion. CONCLUSIONS The UGT1A1 polymorphism may be useful to screen the risk population of gastric cancer, while TYMS, TUBB3 and STMN1 may be potential biomarkers for prognosis and chemotherapy guidance.
Collapse
Affiliation(s)
- Yongkuan Cao
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China.
| | - Guohu Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Peihong Wang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Wei Gan
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Yaning Song
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ling Huang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ya Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Guode Luo
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jiaqing Gong
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| |
Collapse
|
14
|
hsa-miR-376c-3p Regulates Gastric Tumor Growth Both In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9604257. [PMID: 27965982 PMCID: PMC5124681 DOI: 10.1155/2016/9604257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Background. In recent studies, aberrant expression of various microRNAs (miRNAs) is reported to be associated with gastric cancer metastasis. Method. Overexpression construct and inhibitor of hsa-miR-376c-3p were expressed in human gastric adenocarcinoma cell line SGC-7901. The expression level of tumor related genes was detected by qPCR, western blot, and immunostaining. Cell apoptosis was determined by flow cytometry. Xenograft of SGC-7901 cells was used to elucidate the function of hsa-miR-376c-3p in gastric tumor growth in vivo. Result. Expression of hsa-miR-376c-3p was detected in SGC-7901 cells. Downregulation of hsa-miR-376c-3p increased the expression level of BCL-2 and decreased the expression of smad4 and BAD. On the contrary, overexpression of hsa-miR-376c-3p increased the expression of BAD and smad4, while it led to the decreasing expression level of BCL-2. Overexpression of hsa-miR-376c-3p also promoted cell apoptosis in vitro and inhibited gastric tumor growth in vivo. Furthermore, the expression of BCL-2 was higher and expression of smad4 and BAD was lower in tumor tissue than the tissue adjacent to tumor from gastric cancer patients. Conclusion. This study demonstrated that hsa-miR-376c-3p plays an important role in the inhibition of gastric tumor growth and tumor related gene expression both in vitro and in vivo.
Collapse
|
15
|
Biaoxue R, Xiguang C, Hua L, Shuanying Y. Stathmin-dependent molecular targeting therapy for malignant tumor: the latest 5 years' discoveries and developments. J Transl Med 2016; 14:279. [PMID: 27670291 PMCID: PMC5037901 DOI: 10.1186/s12967-016-1000-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the molecular mechanisms on malignant tumors is very critical for the development of new treatment strategies like molecularly targeted therapies. In last 5 years, many investigations suggest that stathmin is over-expressed in a variety of human malignant tumors, and potentially promotes the occurrence and development of tumors. Rather, down-regulation of stathmin can reduce cell proliferation, motility and metastasis and induce apoptosis of malignant tumors. Thus, a stathmin antagonist, such as a specific inhibitor (antibody, small molecule compound, peptide, or siRNA), may be a novel strategy of molecular targeted therapy. This review summarizes the research progress of recent 5 years on the role of stathmin in tumorigenesis, the molecular mechanisms and development of anti-stathmin treatment, which suggest that continued investigations into the function of stathmin in the tumorigenesis could lead to more rationally designed therapeutics targeting stathmin for treating human malignant tumors.
Collapse
Affiliation(s)
- Rong Biaoxue
- Department of Respiratory Medicine, First Affiliated Hospital, Xi'an Medical University, Xi'an, China.
| | - Cai Xiguang
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Liu Hua
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Shuanying
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Lin X, Yu T, Zhang L, Chen S, Chen X, Liao Y, Long D, Shen F. Silencing Op18/stathmin by RNA Interference Promotes the Sensitivity of Nasopharyngeal Carcinoma Cells to Taxol and High-Grade Differentiation of Xenografted Tumours in Nude Mice. Basic Clin Pharmacol Toxicol 2016; 119:611-620. [DOI: 10.1111/bcpt.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Xuechi Lin
- Department of Medical Laboratory; Changsha Medical University; Changsha China
- Department of Anatomy, Histology and Embryology; Institute of Neuroscience; Changsha Medical University; Changsha China
| | - Ting Yu
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Lingxi Zhang
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Sangyan Chen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Xian Chen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Ying Liao
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Dan Long
- Department of Medical Laboratory; Changsha Medical University; Changsha China
| | - Fang Shen
- Department of Medical Laboratory; Changsha Medical University; Changsha China
- Department of Clinical Laboratory; the First Affiliated Hospital of Hunan Normal University; Changsha Hunan China
| |
Collapse
|
17
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
18
|
Habib R, Akhtar J, Taqi M, Yu C, Zhang C. Lentiviral vector-mediated survivin shRNA delivery in gastric cancer cell lines significantly inhibits cell proliferation and tumor growth. Oncol Rep 2015; 34:859-67. [PMID: 26043753 DOI: 10.3892/or.2015.4033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 11/05/2022] Open
Abstract
It has been well documented that survivin has multiple functions including cytoprotection, inhibition of cell death, and cell cycle regulation, particularly at the mitotic stage of the cell cycle, all of which favor cancer survival. Its expression in normal tissue is developmentally regulated, and any type of deregulation in survivin expression favors cancer survival. Gastric cancer is one of the most common malignancies and the second most common cause of cancer-related mortality worldwide. The molecular mechanisms involved in the transformation and progression of gastric cancer remain unclear. In the present study, we investigated the effect of lentiviral vector-mediated survivin shRNA delivery in gastric cancer cell lines. Lentiviral-mediated survivin shRNA was used to knock down survivin expression in gastric cancer cell lines SGC-7901, MGC-803 and MKN-28. The Τranswell chemotaxis and the CCK-8 assays were used to assess the migration and proliferation of the tumor cells, respectively. TUNEL assay was used to detect apoptosis. Quantitative real-time PCR and western blot analysis were used to quantify mRNA and protein levels, respectively. Our results demonstrated that lentiviral-mediated RNAi markedly suppressed the survivin expression in all three gastric cancer cell lines. Significant decrease in survivin mRNA and protein expression were detected in the gastric cancer cell lines stably transfected with the lentiviral survivin shRNA vector, and knockdown of survivin also significantly inhibited the proliferation and migration in the gastric cancer cells and tumorigenicity in a xenograft animal model. Our results indicated that aberrant high cytoplasmic survivin expression in gastric cancer cells is associated with increased proliferation index and tumor growth. In conclusion, our results suggest that lentiviral-mediated gene therapy has the potential to be developed into a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Raees Habib
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Javed Akhtar
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mohammad Taqi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Che Yu
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chunqing Zhang
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|