1
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Kim MJ, Song MH, Ji YS, Park JW, Shin YK, Kim SC, Kim G, Cho B, Park H, Ku JL, Jeong SY. Cell free supernatants of Bifidobacterium adolescentis and Bifidobacterium longum suppress the tumor growth in colorectal cancer organoid model. Sci Rep 2025; 15:935. [PMID: 39762302 PMCID: PMC11704243 DOI: 10.1038/s41598-024-83048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC). However, the influence of bacteria-secreted metabolites on CRC growth is yet to be fully elucidated. In this study, we compared the microbial composition of CRC patients to healthy controls to identify distinct patterns of microbiota-derived metabolites in CRC patients. Metagenomic analysis demonstrated that beneficial bacteria strains; Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum decreased, while Parabacteroides distasonis and Bacteroides ovatus were more prevalent in the CRC patient group. Treatment of cancer organoid lines with microbial culture supernatants from Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum showed remarkable inhibition of cancer growth. This study demonstrates that the bacterial metabolites depleted in CRC patients may inhibit cancer growth and highlights the effects of microbiome-derived metabolites on CRC growth.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Myoung-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yo-Sep Ji
- Holzapfel Effective Microbes (HEM) Pharma, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soon-Chan Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Beomki Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ja-Lok Ku
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Kurokawa H, Ito H, Matano D, Terasaki M, Matsui H. Acetic acid enhances the effect of photodynamic therapy in gastric cancer cells via the production of reactive oxygen species. J Clin Biochem Nutr 2022; 71:206-211. [PMID: 36447491 PMCID: PMC9701594 DOI: 10.3164/jcbn.22-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/28/2022] [Indexed: 07/30/2023] Open
Abstract
Acetic acid is a major component of vinegar and is reported to have beneficial health effects. Notably, it causes oxidative stress and enhances the production of reactive oxygen species (ROS) in gastric cancer cells. ROS play important roles in cellular signal transduction, resulting in the regulation of protein expression and apoptosis. We previously reported that ROS upregulate heme carrier protein 1 (HCP1). Moreover, ROS increase the cellular uptake of porphyrins, which are precursors of heme and substrates for uptake by HCP1. Therefore, we hypothesized that photodynamic therapy (PDT) for cancer treatment using laser irradiation and photosensitizers, such as porphyrin, is enhanced via ROS produced by acetic acid. Herein, we used the rat gastric mucosal cells, RGM1, its cancer-like mutated cells, RGK1, and a manganese superoxide dismutase (MnSOD)-overexpressing RGK cell line, RGK-MnSOD. We confirmed that cancer-specific cellular uptake of porphyrin is increased upon acetic acid treatment and enhances the PDT cytotoxicity in RGK-1, not in RGM-1 and RGK-MnSOD. We believe that this occurs because of the overproduction of ROS and subsequent upregulation of HCP1 in cancerous cells. In conclusion, acetic acid can elevate the effect of PDT by inducing cancer-specific HCP1 expression via ROS production.
Collapse
Affiliation(s)
- Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Algae Biomass Research and Development, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromu Ito
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Matano
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiko Terasaki
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Algae Biomass Research and Development, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
5
|
Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A 2022; 110:1134-1146. [PMID: 35075781 DOI: 10.1002/jbm.a.37361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
Implantation of a suitable nerve guide conduit (NGC) seeded with sufficient Schwann cells (SCs) is required to improve peripheral nerve regeneration efficiently. Given the limitations of isolating and culturing SCs, using various sources of stem cells, including mesenchymal stem cells (MSCs) obtained from nasal olfactory mucosa, can be desirable. Olfactory ecto-MSCs (OE-MSCs) are a new population of neural crest-derived stem cells that can proliferate and differentiate into SCs and can be considered a promising autologous alternative to produce SCs. Regardless, a biomimetic physicochemical microenvironment in NGC such as electroconductive substrate can affect the fate of transplanted stem cells, including differentiation toward SCs and nerve regeneration. Therefore, in this study, the effect of 3D printed polycaprolactone (PCL)/polypyrrole (PPy) conductive scaffolds on differentiation of human OE-MSCS into functional SC-like phenotypes was investigated. Biological evaluation of 3D printed scaffolds was examined by in vitro culturing the OE-MSCs on samples surfaces, and conductivity showed no effect on increased cell attachment, proliferation rate, viability, and distribution. In contrast, immunocytochemical staining and real-time polymerase chain reaction analysis indicated that 3D structures coated with PPy could provide a favorable microenvironment for OE-MSCs differentiation. In addition, it was found that differentiated OE-MSCs within PCL/PPy could secrete the highest amounts of nerve growth factor and brain-derived neurotrophic factor neurotrophic factors compared to pure PCL and 2D culture. After co-culturing with PC12 cells, a significant increase in neurite outgrowth on PCL/PPy conductive scaffold seeded with differentiated OE-MSCs. These findings indicated that 3D printed PCL/PPy conductive scaffold could support differentiation of OE-MSCs into SC-like phenotypes to promote neurite outgrowth, suggesting their potential for neural tissue engineering applications.
Collapse
Affiliation(s)
- Maedeh Entezari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhtiyari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tribonias G, Theodoropoulou A, Stylianou K, Giotis I, Mpitouli A, Moschovis D, Komeda Y, Manola ME, Paspatis G, Tzouvala M. Irrigating Acetic Acid Solution During Colonoscopy for the Detection of Sessile Serrated Neoplasia: A Randomized Controlled Trial. Dig Dis Sci 2022; 67:282-292. [PMID: 33515378 DOI: 10.1007/s10620-021-06858-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Misdiagnosed sessile serrated lesions (SSLs) are important precursors for interval colorectal cancers. AIMS We investigated the usage of acetic acid (AA) solution for improving the detection of SSLs in the right colon in a randomized controlled trial. METHODS A tandem observation of the right colon was performed in 412 consecutive patients. A first inspection was performed under white light high-definition endoscopy. In the AA group, a low concentration vinegar solution (AA: 0.005%) irrigated by a water pump in the right colon was compared with a plain solution of normal saline (NS) in the diagnostic yield of SSLs during the second inspection. Secondary outcomes in overall polyp detection were measured. RESULTS Qualitative comparisons showed significant differences in the detection rates of all polyps except adenomas, with remarkable improvement in the demonstration of advanced (> 20 mm), SSLs, and hyperplastic polyps during the second inspection of the right colon using the AA solution. Significant improvement was also noted in the AA group, as far as the mean number of polyps/patient detected, not only in SSLs (AA group: 0.14 vs. NS group: 0.01, P < 0.001), but also in all histological types and all size-categories in the right colon. Small (≤ 9 mm) polyps were detected at a higher rate in the sigmoid colon expanding the effect of the method in the rest of the colon. CONCLUSION AA-assisted colonoscopy led to a significant increase in SSLs detection rate in the right colon in a safe, quick, and effective manner.
Collapse
Affiliation(s)
- George Tribonias
- Gastroenterology Department, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Mantouvalou D. 3, 18454, Athens, Greece.
| | - Angeliki Theodoropoulou
- Gastroenterology Department, General Hospital of Heraklion "Venizeleio - Pananeio", Crete, Greece
| | | | - Ioannis Giotis
- Gastroenterology Department, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Mantouvalou D. 3, 18454, Athens, Greece
| | - Afroditi Mpitouli
- Gastroenterology Department, General Hospital of Heraklion "Venizeleio - Pananeio", Crete, Greece
| | - Dimitrios Moschovis
- Gastroenterology Department, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Mantouvalou D. 3, 18454, Athens, Greece
| | - Yoriaki Komeda
- Gastroenterology Department, Kindai University Hospital, Osaka, Japan
| | - Margarita-Eleni Manola
- Gastroenterology Department, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Mantouvalou D. 3, 18454, Athens, Greece
| | - Gregorios Paspatis
- Gastroenterology Department, General Hospital of Heraklion "Venizeleio - Pananeio", Crete, Greece
| | - Maria Tzouvala
- Gastroenterology Department, General Hospital of Nikaia-Piraeus "Agios Panteleimon", Mantouvalou D. 3, 18454, Athens, Greece
| |
Collapse
|
7
|
Tawre MS, Kamble EE, Kumkar SN, Mulani MS, Pardesi KR. Antibiofilm and antipersister activity of acetic acid against extensively drug resistant Pseudomonas aeruginosa PAW1. PLoS One 2021; 16:e0246020. [PMID: 33529248 PMCID: PMC7853517 DOI: 10.1371/journal.pone.0246020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an ESKAPE pathogen associated with difficult-to-treat burn wound and surgical-site infections. This study aimed to characterise an extensively drug resistant (XDR) P. aeruginosa isolate (designated PAW1) and to investigate the antibiofilm and antipersister effect of acetic acid on PAW1. PAW1 was identified using biotypic (VITEK) and genotypic (16S rDNA) analysis. Minimum inhibitory concentration (MIC) and disc susceptibility testing showed high level resistance against all antibiotics from classes including beta lactams, cephems, carbapenems and fluoroquinolones. It was therefore identified as extensively drug resistant (XDR), showing resistance to all antibiotics except for, aminoglycoside (gentamicin and netilmicin) and lipopeptides (polymyxin B). Time kill assays showed antibiotic tolerant, persister cell formation in presence of 100X MICs of gentamicin and polymyxin B. Other virulence traits such as ability to produce lipase, protease, haemolysin, and siderophores and to form biofilms were additional factors which may contribute to its pathogenicity. PAW1 showed promising susceptibility against acetic acid with MIC and minimum biofilm inhibitory concentration of 0.156% (v/v). Percent viability of PAW1 was dependent on dose and treatment time of acetic acid. 0.625% acetic acid treatment of 5 minutes was effective in killing >90% planktonic cells showing lesser toxicity to L929 cells (IC50 = 0.625%). Biofilm disruption caused due to acetic acid was also dose dependent, showing 40.57% disruption after treatment with 0.625% acetic acid for 5 minutes. FESEM imaging and live dead staining of planktonic and biofilm forms of PAW1 confirmed that acetic acid treatment caused 19.04% of cell shrinkage and disruption of extracellular matrix resulting in killing of cells. Antipersister activity of acetic acid was demonstrated by showing complete killing of PAW1 at 4X MIC. Overall, this study characterised an XDR isolate P. aeruginosa showing resistance and tolerance to various antibiotics. Antipersister and antibiofilm effect of acetic acid demonstrates the importance of forgotten topical agents as an effective strategy to treat XDR pathogens.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ekta E. Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mansura S. Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
8
|
Abstract
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Collapse
|
9
|
Adam ME, Fehervari M, Boshier PR, Chin ST, Lin GP, Romano A, Kumar S, Hanna GB. Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer. Anal Chem 2019; 91:3740-3746. [PMID: 30699297 DOI: 10.1021/acs.analchem.9b00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A noninvasive breath test has the potential to improve survival from esophagogastric cancer by facilitating earlier detection. This study aimed to investigate the production of target volatile fatty acids (VFAs) in esophagogastric cancer through analysis of the ex vivo headspace above underivatized tissues and in vivo analysis within defined anatomical compartments, including analysis of mixed breath, isolated bronchial breath, and gastric-endoluminal air. VFAs were measured by PTR-ToF-MS and GC-MS. Levels of VFAs (acetic, butyric, pentanoic, and hexanoic acids) and acetone were elevated in ex vivo experiments in the headspace above esophagogastric cancer compared with the levels in samples from control subjects with morphologically normal and benign conditions of the upper gastrointestinal tract. In 25 patients with esophagogastric cancer and 20 control subjects, receiver-operating-characteristic analysis for the cancer-specific VFAs butyric acid ( P < 0.001) and pentatonic acid ( P = 0.005) within in vivo gastric-endoluminal air gave an area under the curve of 0.80 (95% confidence interval of 0.65 to 0.93, P = 0.01). Compared with mixed- and bronchial-breath samples, all examined VFAs were found in highest concentrations within esophagogastric-endoluminal air. In addition, VFAs were higher in all samples derived from cancer patients compared with in the controls. Equivalence of VFA levels within the mixed and bronchial breath of cancer patients suggests that their origin within breath is principally derived from the lungs and, by inference, from the systemic circulation as opposed to direct passage from the upper gastrointestinal tract. These findings highlight the potential to utilize VFAs for endoluminal-gas biopsies and noninvasive mixed-exhaled-breath testing for esophagogastric-cancer detection.
Collapse
Affiliation(s)
- Mina E Adam
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Matyas Fehervari
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Piers R Boshier
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sung-Tong Chin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Geng-Ping Lin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Andrea Romano
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sacheen Kumar
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
- Department of Upper Gastrointestinal Surgery , The Royal Marsden Hospital , London SW3 6JJ , United Kingdom
| | - George B Hanna
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| |
Collapse
|
10
|
Terasaki M, Ito H, Kurokawa H, Tamura M, Okabe S, Matsui H, Hyodo I. Acetic acid is an oxidative stressor in gastric cancer cells. J Clin Biochem Nutr 2018; 63:36-41. [PMID: 30087542 PMCID: PMC6064817 DOI: 10.3164/jcbn.17-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022] Open
Abstract
Acetic acid can cause cellular injury. We previously reported that acetic acid induces cancer cell-selective death in rat gastric cells. However, the mechanism is unclear. Generally, cancer cells are more sensitive to reactive oxygen species than normal cells. Accordingly, in this study, we investigated the involvement of oxidative stress in cancer cell-selective death by acetic acid using normal gastric mucosal cells and cancerous gastric mucosal cells. The cancer cell-selective death was induced at the concentration of 2-5 µM acetic acid. Cancerous gastric mucosal cells had increased expression of monocarboxylic transporter 1 and high uptake of acetic acid, compared to normal gastric mucosal cells. The exposure of cancerous gastric mucosal cells to acetic acid enhanced production of reactive oxygen species and expression of monocarboxylic transporter 1, and induced apoptosis. In contrast, acetic acid showed minor effects in normal gastric mucosal cells. These results indicate that acetic acid induced cancer cell-selective death in gastric cells through a mechanism involving oxidative stress.
Collapse
Affiliation(s)
- Masahiko Terasaki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromu Ito
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromi Kurokawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masato Tamura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Susumu Okabe
- General Corporative Association, Kyoto GI Disease Research Center, 671-1006 Marukizaimokucho, Nakagyo-ku, Kyoto 604-8106, Japan
| | - Hirofumi Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan.,Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ichinosuke Hyodo
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Guildford A, Morris C, Kitt O, Cooper I. The effect of urinary Foley catheter substrate material on the antimicrobial potential of calixerene‐based molecules. J Appl Microbiol 2018; 124:1047-1059. [DOI: 10.1111/jam.13658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/05/2017] [Accepted: 11/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- A. Guildford
- School of Pharmacy & Biomolecular Sciences University of Brighton Brighton UK
| | - C. Morris
- School of Pharmacy & Biomolecular Sciences University of Brighton Brighton UK
| | - O. Kitt
- School of Pharmacy & Biomolecular Sciences University of Brighton Brighton UK
| | - I. Cooper
- School of Pharmacy & Biomolecular Sciences University of Brighton Brighton UK
| |
Collapse
|