1
|
He H, Hao M, Luo P, Chen J, An Y, Huang J, He R, Du Q, Zhang Q, Wang J. Inhibition Peroxiredoxin-2 by Capsaicin Ameliorates Rheumatoid Arthritis via ROS-Mediated Apoptosis in Fibroblast-Like Synoviocytes. MedComm (Beijing) 2025; 6:e70209. [PMID: 40443720 PMCID: PMC12122188 DOI: 10.1002/mco2.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 06/02/2025] Open
Abstract
Rheumatoid arthritis (RA), a prevalent and incurable autoimmune disease globally, is characterized by the immune system attacking the body's own tissues, leading to joint inflammation and damage. Capsaicin (CAP), from Capsicum annuum L., is known for its burning sensation-inducing property and has shown various pharmacological effects, yet its specific mechanisms and targets in RA treatment remain largely unclear. This study aimed to investigate the role of CAP in RA by synthesizing CAP probes and using activity-based protein profiling. We found that CAP reduced joint swelling in arthritic mice and exerted anti-inflammatory and antiproliferative effects on fibroblast-like synoviocytes. We identified that CAP binds to PRDX2, inhibiting its antioxidant function and inducing oxidative stress and apoptosis, contributing to the antiarthritic effects. These results suggest that PRDX2 is a potential target for CAP in RA treatment, providing new insights into the molecular mechanisms and potential therapeutic strategies for RA.
Collapse
Affiliation(s)
- Hengkai He
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- State Key Laboratory of Southwestern Chinese Medicine ResourceSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Mingjing Hao
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- Department of Pulmonary and Critical Care MedicineShenzhen Institute of Respiratory Diseasesand Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhenGuangdongChina
| | - Piao Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesGuangzhouChina
| | - Junhui Chen
- Department of Pulmonary and Critical Care MedicineShenzhen Institute of Respiratory Diseasesand Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhenGuangdongChina
| | - Yehai An
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jingnan Huang
- Department of Pulmonary and Critical Care MedicineShenzhen Institute of Respiratory Diseasesand Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhenGuangdongChina
| | - Ruiyi He
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qingfeng Du
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesGuangzhouChina
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- Department of Pulmonary and Critical Care MedicineShenzhen Institute of Respiratory Diseasesand Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhenGuangdongChina
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesGuangzhouChina
| | - Jigang Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine PharmaceuticsSchool of Traditional Chinese Medicine and School of pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
- Department of Pulmonary and Critical Care MedicineShenzhen Institute of Respiratory Diseasesand Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhenGuangdongChina
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesGuangzhouChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
2
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
3
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
4
|
Almási N, Török S, Valkusz Z, Tajti M, Csonka Á, Murlasits Z, Pósa A, Varga C, Kupai K. Sigma-1 Receptor Engages an Anti-Inflammatory and Antioxidant Feedback Loop Mediated by Peroxiredoxin in Experimental Colitis. Antioxidants (Basel) 2020; 9:antiox9111081. [PMID: 33158023 PMCID: PMC7692579 DOI: 10.3390/antiox9111081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory condition of the gastrointestinal tract. Since the treatment of IBD is still an unresolved issue, we designed our study to investigate the effect of a novel therapeutic target, sigma-1 receptor (σ1R), considering its ability to activate antioxidant molecules. As a model, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to induce colitis in Wistar–Harlan male rats. To test the beneficial effects of σ1R, animals were treated intracolonically (i.c.): (1) separately with an agonist (fluvoxamine (FLV)), (2) with an antagonist of the receptor (BD1063), or (3) as a co-treatment. Our results showed that FLV significantly decreased the severity of inflammation and increased the body weight of the animals. On the contrary, simultaneous treatment of FLV with BD1063 diminished the beneficial effects of FLV. Furthermore, FLV significantly enhanced the levels of glutathione (GSH) and peroxiredoxin 1 (PRDX1) and caused a significant reduction in 3-nitrotyrosine (3-NT) levels, the effects of which were abolished by co-treatment with BD1063. Taken together, our results suggest that the activation of σ1R in TNBS-induced colitis through FLV may be a promising therapeutic strategy, and its protective effect seems to involve the antioxidant pathway system.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Zsuzsanna Valkusz
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
| | - Máté Tajti
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary;
| | - Zsolt Murlasits
- Laboratory Animals Research Center, Qatar University, Doha 2713, Qatar;
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
- Interdisciplinary Excellence Center, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
- Correspondence: ; Tel.: +36-6254-4884
| |
Collapse
|
5
|
Montoya A, López MC, Vélez ID, Robledo SM. Label-free quantitative proteomic analysis reveals potential biomarkers for early healing in cutaneous leishmaniasis. PeerJ 2019; 6:e6228. [PMID: 30648003 PMCID: PMC6330957 DOI: 10.7717/peerj.6228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background Leishmaniasis is a parasitic disease caused by more than 20 species of the Leishmania genus. The disease is globally distributed and is endemic in 97 countries and three territories in the tropical and subtropical regions. The efficacy of the current treatments is becoming increasingly low either due to incomplete treatment or resistant parasites. Failure of treatment is frequent, and therefore, the search for early biomarkers of therapeutic response in cutaneous leishmaniasis (CL) is urgently needed. Objective The aim of this study was to compare the proteomic profiles in patients with CL before and after 7 days of treatment and identify early biomarkers of curative response. Methods Four patients with a parasitological diagnosis of leishmaniasis with confirmation of species by PCR-RFLP were recruited. All patients had a single lesion, and a protein from the middle of the ulcer was quantified by liquid chromatography and mass spectrometry. Results A total of 12 proteins showed differential expression in the comparative LC-electrospray ionization MS/MS (LC-ESI-MS/MS) triplicate analysis. Seven of them were up-regulated and five of them were down-regulated. Calcium binding proteins A2, A8, and A9 and hemoglobin subunits alpha-2 and delta showed high correlation with epidermis development and immune response. Conclusion We identified changes in the profiles of proteins that had a positive therapeutic response to the treatment. The proteins identified with differential expression are related to the reduction of inflammation and increased tissue repair. These proteins can be useful as biomarkers for early monitoring of therapeutic response in CL.
Collapse
Affiliation(s)
- Andrés Montoya
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Manuel Carlos López
- Molecular Biology Department Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina "López Neyra", Granade, Spain
| | - Ivan D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|