1
|
Zaparte A, Cruz FF, de Souza JB, Morrone FB. P2 receptors signaling in the esophagus: from inflammation to cancer. Purinergic Signal 2025:10.1007/s11302-025-10089-4. [PMID: 40338451 DOI: 10.1007/s11302-025-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
The signaling mechanisms of nucleotides and nucleosides have been extensively studied over the past decades in various conditions affecting distinct organs and tissues. It is well-established that purinergic receptors are expressed in healthy tissues, with expression levels often increasing under pathological conditions. These receptors play crucial roles in numerous physiological and pathological processes, including inflammation, tissue repair, and cellular signaling. However, the purinergic context in the esophagus and its associated pathologies remains poorly understood, representing a significant gap in current knowledge. In this review, we compiled and analyzed the available data on the involvement of P2 purinergic receptors in esophageal diseases, such as gastroesophageal reflux disease and esophageal carcinoma. Specifically, we discuss the pharmacological modulation, functional characterization, and expression patterns of these receptors in various esophageal cell lines and immune tissue samples, under both healthy and pathological conditions. Understanding the mechanisms of action and signaling pathways involving P2 purinergic receptors in the esophagus can offer valuable insights into their biological roles and emphasize their potential as therapeutic targets for future clinical applications.
Collapse
Affiliation(s)
- Aline Zaparte
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6690, 90619 - 900, Porto Alegre, RS, Brasil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil
| | - Fernanda F Cruz
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil
| | - Julia B de Souza
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6690, 90619 - 900, Porto Alegre, RS, Brasil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil
| | - Fernanda B Morrone
- Programa de Pós-Graduação Em Medicina E Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6690, 90619 - 900, Porto Alegre, RS, Brasil.
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil.
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifical Catholic University of RS, Avenida Ipiranga, 6681, Partenon, 90619 - 900, Porto Alegre, RS, Brasil.
| |
Collapse
|
2
|
Benzi A, Baratto S, Astigiano C, Sturla L, Panicucci C, Mamchaoui K, Raffaghello L, Bruzzone S, Gazzerro E, Bruno C. Aberrant Adenosine Triphosphate Release and Impairment of P2Y2-Mediated Signaling in Sarcoglycanopathies. J Transl Med 2023; 103:100037. [PMID: 36925196 DOI: 10.1016/j.labinv.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy.
| | - Elisabetta Gazzerro
- Unit of Muscle Research Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Berlin, Germany.
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and ChildHealth-DINOGMI, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2023; 19:199-206. [PMID: 35218451 PMCID: PMC9984584 DOI: 10.1007/s11302-022-09851-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammation is one of the potential factors to cause the damage of ocular surface in dry eye disease (DED). Increasing evidence indicated that purinergic A1, A2A, A3, P2X4, P2X7, P2Y1, P2Y2, and P2Y4 receptors play an important role in the regulation of inflammation in DED: A1 adenosine receptor (A1R) is a systemic pro-inflammatory factor; A2AR is involved in the activation of the MAPK/NF-kB pathway; A3R combined with inhibition of adenylate cyclase and regulation of the mitogen-activated protein kinase (MAPK) pathway leads to regulation of transcription; P2X4 promotes receptor-associated activation of pro-inflammatory cytokines and inflammatory vesicles; P2X7 promotes inflammasome activation and release of pro-inflammatory cytokines IL-1β and IL-18; P2Y receptors affect the phospholipase C(PLC)/IP3/Ca2+ signaling pathway and mucin secretion. These suggested that purinergic receptors would be promising targets to control the inflammation of DED in the future.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Fan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Ito MA, Kojima E, Yanagihara Y, Yoshida K, Matsuoka I. Differential Effects of Gq Protein-Coupled Uridine Receptor Stimulation on IL-8 Production in 1321N1 Human Astrocytoma Cells. Biol Pharm Bull 2022; 45:691-697. [PMID: 35650097 DOI: 10.1248/bpb.b21-01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein-coupled receptors (GPCRs) trigger various physiological functions. GPCR-mediated effects largely depend on the receptor-associated G-protein subtypes. However, compelling evidence suggests that single receptor proteins activate multiple G-protein subtypes to induce diverse physiological responses. This study compared responses mediated by three different Gq-binding uridine nucleotide receptors, P2Y2, P2Y4, and P2Y6, by measuring Ca2+ signaling and interleukin (IL)-8 production. In 1321N1 human astrocytoma cells stably expressing these receptors, agonist stimulation evoked concentration-dependent intracellular Ca2+ elevation to a similar extent. In contrast, agonist-induced IL-8 production was prominent in P2Y6-expressing cells, but not in P2Y2- and P2Y4-expressing cells. In addition to inhibition of Gq signaling, G12 signal blockade attenuated uridine 5'-diphosphate (UDP)-induced IL-8 production, suggesting the involvement of a small G-protein pathway. The Rac inhibitor EHop-16 prevented UDP-induced IL-8 release. The P2Y6-triggered IL-8 production was also inhibited by extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and protein kinase B (Akt) inhibitors. These results suggest that P2Y6 receptor-induced IL-8 production requires Gq-mediated Ca2+ signaling as well as G12-mediated activation of Rac. The results also suggest the importance of considering the involvement of multiple G proteins in understanding GPCR-mediated functions.
Collapse
Affiliation(s)
- Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Erika Kojima
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Yu Yanagihara
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
5
|
Zaparte A, Cappellari AR, Brandão CA, de Souza JB, Borges TJ, Kist LW, Bogo MR, Zerbini LF, Ribeiro Pinto LF, Glaser T, Gonçalves MCB, Naaldijk Y, Ulrich H, Morrone FB. P2Y 2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur J Pharmacol 2020; 891:173687. [PMID: 33130276 DOI: 10.1016/j.ejphar.2020.173687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.
Collapse
Affiliation(s)
- Aline Zaparte
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Angélica R Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Caroline A Brandão
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Júlia B de Souza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Thiago J Borges
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Luíza W Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Cancer, Rua Andre Cavalcante, 37, Centro, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Maria Carolina B Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
7
|
Norita K, Asanuma K, Koike T, Okata T, Fujiya T, Abe Y, Nakagawa K, Hatta W, Uno K, Nakamura T, Nakaya N, Asano N, Imatani A, Shimosegawa T, Masamune A. Impaired Mucosal Integrity in Proximal Esophagus Is Involved in Development of Proton Pump Inhibitor-Refractory Nonerosive Reflux Disease. Digestion 2020; 102:404-414. [PMID: 32784296 DOI: 10.1159/000508661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/10/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Weakly acidic reflux reaching to the proximal esophagus is closely related to the perception of gastroesophageal reflux in patients with nonerosive reflux disease despite treatment with a proton pump inhibitor (PPI). However, little is known about the involvement of the patients' mucosal integrity of the proximal esophagus. METHODS We recruited 15 symptomatic nonerosive gastroesophageal reflux disease (GERD) patients with a positive symptom index despite PPI treatment and 11 healthy asymptomatic volunteers as controls. The biopsy specimens obtained from the proximal and distal esophagus were applied to a mini-Ussing chamber system to measure transepithelial electrical resistance (TEER) against a pH 4 weak acid. The esophageal biopsy samples were subjected to quantitative real-time PCR and immunohistochemical analysis. RESULTS In the proximal esophagus, the weak acid exposure reduced the TEER in the PPI-refractory patients compared to that in the controls. The frequency of the reflux extending to the proximal esophagus had a significant correlation with the reduction in the proximal esophageal TEER in the patients. The reduced TEER in the proximal esophagus was accompanied by an increase in IL-8 and IL-1β mRNA and a decrease in occludin mRNA levels. The proximal esophageal mucosa in the patients presented infiltration of CD3-positive lymphocytes and an increased expression of solute carrier organic anion transporter family member 2A1 (SLCO2A1), a passage gate of reflux symptom-evoking molecules. CONCLUSIONS The reflux perception is related to an impairment of the proximal esophageal mucosal integrity in patients with nonerosive reflux disease despite PPI.
Collapse
Affiliation(s)
- Kazuaki Norita
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan,
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Okata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuaki Abe
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Nakagawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakamura
- Division of Personalized Prevention and Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoki Nakaya
- Division of Personalized Prevention and Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Gu X, Yang Y, Li T, Chen Z, Fu T, Pan J, Ou J, Yang Z. ATP mediates the interaction between human blastocyst and endometrium. Cell Prolif 2020; 53:e12737. [PMID: 31821660 PMCID: PMC7046473 DOI: 10.1111/cpr.12737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Embryo implantation needs a reciprocal interaction between competent embryo and receptive endometrium. Adenosine triphosphate (ATP) produced by stressed or injured cells acts as an important signalling molecule. This study aims to investigate whether adenosine triphosphate (ATP) plays an important role in the dialogue of human blastocyst-endometrium. MATERIALS AND METHODS The concentration of lactate was analysed in culture medium from human embryos collected from in vitro fertilization patients. Extracellular ATP was measured by ATP Bioluminescent Assay Kit. Ishikawa cells and T-HESCs were treated with ATP, ATP receptor antagonist, ATP hydrolysis enzyme or inhibitors of ATP metabolic enzymes. The levels of gene expression were evaluated by real-time PCR and immunoassay. RESULTS We showed that injured human endometrial epithelial cells could rapidly release ATP into the extracellular environment as an important signalling molecule. In addition, blastocyst-derived lactate induces the release of non-lytic ATP from human endometrial receptive epithelial cells via connexins. Extracellular ATP stimulates the secretion of IL8 from epithelial cells to promote the process of in vitro decidualization. Extracellular ATP could also directly promote the decidualization of human endometrial stromal cells via P2Y-purinoceptors. More importantly, the supernatants of injured epithelial cells clearly induce the decidualization of stromal cells in time-dependent manner. CONCLUSION Our results suggest that ATP should play an important role in human blastocyst-endometrium dialogue for the initiation of decidualization.
Collapse
Affiliation(s)
- Xiao‐Wei Gu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Yan Yang
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Tao Li
- Center for Reproductive MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zi‐Cong Chen
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Tao Fu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Ji‐Min Pan
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐Ping Ou
- Center for Reproductive MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zeng‐Ming Yang
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Hossain MZ, Ando H, Unno S, Nakamoto T, Kitagawa J. Functional involvement of acid-sensing ion channel 3 in the swallowing reflex in rats. Neurogastroenterol Motil 2020; 32:e13728. [PMID: 31565832 DOI: 10.1111/nmo.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Difficulty swallowing represents a major health problem. Swallowing function is improved by incorporating weak acids in suspensions/food boluses, implicating acid-sensing ion channels (ASICs) in the swallowing reflex. However, the functional involvement of ASICs in the swallowing reflex has not been fully elucidated. METHODS We localized ASIC3s in swallowing-related regions innervated by the superior laryngeal nerves (SLNs) and those in the nodose-petrosal-jugular ganglionic complex (NPJc) and examined their functional involvement in evoking the swallowing reflex in rats. KEY RESULTS We localized ASIC3s on epithelial cells and nerve fibers in swallowing-related regions innervated by the SLNs. In the NPJc, around half of the SLN-afferent neurons expressed ASIC3. Two-thirds of ASIC3s were localized on unmyelinated neurons in the nodose and petrosal ganglia. In the jugular ganglia, they were equally distributed on unmyelinated and myelinated neurons. Topical application of a synthetic non-proton ASIC3 activator, 2-guanidine-4-methylquinazoline (GMQ), and its natural endogenous ligand agmatine (a metabolite of the amino acid arginine) in swallowing-related regions evoked a considerable number of swallowing reflexes. Increasing the concentration of GMQ and agmatine up to a certain concentration increased the number of evoked reflexes and shortened the interval between the evoked reflexes. Agmatine was less potent than GMQ in its ability to evoke swallowing reflexes. Prior topical application of an ASIC3 antagonist significantly attenuated the number of GMQ- and agmatine-evoked swallowing reflexes. CONCLUSIONS & INFERENCES Acid-sensing ion channel 3s localized on nerves and epithelial cells in swallowing-related regions are functional in evoking the swallowing reflex and activation of these channels via a pharmacological agonist appears to improve swallowing behavior.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Hiroshi Ando
- Department of Biology, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Tetsuji Nakamoto
- Division of Oral Pathogenesis and Disease Control, Department of Oral Implantology, Asahi University School of Dentistry, Mizuho, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
11
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
12
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|